

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-17/0740 of 2018/10/23

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No. 305/2011: ETA-Danmark A/S

Trade name of the construction product:	fischer concrete screw ULTRACUT FBS II A4
Product family to which the above construction product belongs:	Mechanical fasteners for use in cracked and un- cracked concrete
Manufacturer:	fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 D-72178 Waldachtal
Manufacturing plant:	fischerwerke
This European Technical Assessment contains:	15 pages including 3 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No. 305/2011, on the basis of:	EAD 330232-00-0601; Mechanical fasteners for use in concrete
This version replaces:	The ETA with the same number issued on 2018-05- 16

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

fischer concrete screw ULTRACUT FBS II A4 is a concrete screw made of stainless steel. The anchor is installed in a drilled hole and anchored by mechanical interlock.

An illustration of the product is given in Annex A.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex B, Table B2.1. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C1, C2 and C4.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C3.

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirement 1 has been made in accordance with EAD 330232-00-0601; Mechanical fasteners for use in concrete.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 1996/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No. 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2018-10-23 by

Thomas Bruun Managing Director, ETA-Danmark

FBS II A4									
8		10			12				
50	65	55	65	85	60	75	100		
			\checkmark						
	\checkmark			\checkmark			\checkmark		
ormal weigh	ot concrete y	without	ibros a	cordin	a to EN	206.20	13		
0		without	ibies a	ccorung		200.20	15		
	200.2013								
	50	50 65 	8 50 65 50 √ Image: second s	8 10 50 65 55 65 ✓ ✓ ✓ ✓ Important weight concrete without fibres are ✓ ✓	8 10 50 65 55 65 85 ✓ ✓ ✓ ✓ Important weight concrete without fibres according ✓ ✓	8 10 50 65 55 65 85 60 ✓ ✓ ✓ ✓ ✓ ✓ Important weight concrete without fibres according to EN Important fibres according to EN Important fibres according to EN	8 10 12 50 65 55 65 85 60 75 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ormal weight concrete without fibres according to EN 206:20 50 50 50 50 50 50 50 50 50 75		

Use conditions (Environmental conditions):

- Structures subjected to dry internal conditions
- Structures subjected to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere or indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the screw is indicated on the design drawings
 (e.g. position of the screw relative to reinforcement or to supports, etc.).
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055
- Seismic design according EOTA Technical Report TR 049

Installation:

- Hammer drilling or diamond drilling or hollow drilling according to Annex B4
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- Adjustability according to Annex B3
- Cleaning of drill hole is not necessary when using a hollow drill or:
 - o If drilling vertically upwards
 - \circ If drilling vertical downwards and the drill hole depth has been increased. It is recommended to increase the drill depth with additional 3 d₀.
- After correct installation further turning of the screw head should not be possible.
- The head of the screw must be fully engaged on the fixture and show no signs of damage.
- For seismic performance category C2 applications: The gap between screw shaft and fixture must be filled with mortar; mortar compressive strength ≥ 50 N/mm².(e.g. FIS V, FIS HB, FIS SB or FIS EM Plus)

fischer concrete screw ULTRACUT FBS II A4

Intended use Specification

Annex B1

of European Technical Assessment ETA-17/0740

FBS II A4			8	8		10			12	
Nominal embedment depth	h _{nom}		50	65	55	65	85	60	75	100
Nominal drill hole diameter	d ₀		ł	8		10			12	
Cutting diameter of drill bits			8,	45		10,45			12,50)
Cutting diameter for diamond drillers	d _{cut} ≤	[mm]	8,	10		10,30			12,30)
Clearance hole diameter	d _f		10,6 -	– 12,0	12	12,8 - 14,0		14,8 – 16,0		
Wrench size (US,S)	SW		13		15		17			
Tx-size	Тx	[-]	4	10	50					
Countersunk head diameter	dh	18 21				-				
Countersunk diameter in fixture	dc		2	20		23				
Drill hole depth			60	75	65	75	95	70	85	110
Drill hole depth (with adjustable setting)	[−] h ₁ ≥	[mm]	70	85	75	85	105	80	95	120
Thickness of fixture	$t_{fix} \leq$					L - h _n	om			
Length of corrow	$L_{min} =$		50	65	55	65	85	60	75	100
Length of screw	L _{max} =		400	415	405	415	435	410	425	450
Torque impact screw driver	T _{imp,max}			4	50			650		
Torque impact screw driver (with adjustable setting process)	T _{imp,max}	[Nm]	300					450		

fischer concrete screw ULTRACUT FBS II A4

Intended use Installation parameters Annex B2

of European Technical Assessment ETA-17/0740

It is permissible to untighten the screw up to two times for adjustment purposes. Therefore the screw may be untightened to a maximum of $L_{adj} = 20$ mm to the surface of the initial fixture. The total permissible thickness of shims added during the adjustment process is $t_{adj} = 10$ mm.

Table B3.1:Minimum thickness of concrete members, minimum spacing and edge distance

FBS II A4				8		10			12		
Nominal embedment depth	h _{nom}		50	65	55	65	85	60	75	100	
Minimum thickness of concrete member	h _{min}	[mm]	100	120	100	120	140	110	130	150	
Minimum spacing	Smin		35			40			50		
Minimum edge distance	Cmin			35		40			50		
fischer c				r FBS II A4				of	nnex B3 European		
Minimum thickness		ed use – A bers, mini			e distanc	ce	Technical Assessment ETA-17/0740				

Nominal embe Steel failure f Characteristic Partial factor Characteristic Partial factor Factor for duct	or tension load resistance	h _{nom}	[mm]									
Characteristic Partial factor Characteristic Partial factor	resistance	and she	L	50	65	55	65	85	60	75	100	
Partial factor Characteristic Partial factor			ar load									
Characteristic Partial factor	ragiotopoo	N _{Rk,s}	[kN]	27	[,] ,8		43,8			67,7		
Partial factor	ragiotanaa	γMs	-			1	1,5	5				
	resistance	V _{Rk,s}	[kN]	18,0	27,8	13,2	19,3	36,6	20,4	40,1	45,8	
Factor for duct		γMs		,			1,2	5			,	
	tility	k7	[-]				1,0					
Characteristic	,		[NIm]	24	2					110.0		
resistance		M ⁰ Rk,s	[Nm]	31	,3		68,5			112,8		
Pullout failure	e					-					•	
Charact. resistance in	uncracked	$N_{Rk,p}$	[kN]	7,0	14,0	8,5	14,0	_1)	10,0	12,0	_1)	
concrete C20/25	cracked	N _{Rk,p}	[kN]	4,0	9,0	4,5	6,0	16,0	4,5	11,0	_1)	
	C25/30						1,1	2				
	C30/37						1,2	2				
Increasing	C35/45	Ψc	r 1				1,3	2				
factors concrete	C40/50		[-]				1,4	1				
concrete	C45/55						1,5	0				
	C50/60						1,5	8				
Installation fac	tor	γinst	[-]				1,0)				
Concrete con	e failure and sp	olitting fa	ailure; co	oncrete pry	out failure)						
Effective embe	edment depth	h _{ef}	[mm]	40	52	43	51	68	47	60	81	
Factor for unc	racked concrete	kucr,N					11,	0				
Factor for crac	ked concrete	k _{cr,N}	[-]				7,7	7				
Characteristic	edge distance	Ccr,N	[]				1,5	h _{ef}	ef			
Characteristic	spacing	S _{cr,N}	[mm]				3 h	ef				
Char. resistan		N^0 Rk,Sp	[kN]	12,0	18,4	13,0	17,9	_1)	15,8	22,9	_1)	
Char. edge dis splitting	stance for	Ccr,sp	[mm]				1,5	h _{ef}				
Char. spacing		Scr,sp					3 h					
Factor for pryc		k ₈	[-]		1,0			2,0	1,0	2	,0	
Installation fac		γinst					1,0)				
Concrete edg						1					T	
Effective lengt		$I_f = h_{nom}$	[mm]	50	65	55	65	85	60	75	100	
Nominal diame	eter of screw	d _{nom}	[]	8	3		10			12		
Adjustment												
Maximum thic	kness of shims	t _{adj}	[mm]				10)				
Max. number o	of adjustments	Na	[]				2					
¹⁾ Pullout failur	e not decisive.											
	fischer conc	crete scro	ew ULT	RACUT FI	BS II A4					mex C1 European		

FBS II A4				8	10	12
Nominal embed	ment depth	h _{nom}	[mm]	65	85	100
Steel failure for	tension loa	ad and she	ear load C1			
Chara stariatia ra	alatanaa	N _{Rk,s,eq}	[LAN]	27,8	43,8	67,7
Characteristic re	sistance	$V_{Rk,s,eq}$	[kN]	18,1	29,3	36,6
Pullout failure						
Characteristic re cracked concret		$N_{Rk,p,eq}$	[kN]	9,0	16,0	_1)
Concrete cone	failure					
Effective embed	ment depth	h _{ef}		52	68	81
Concrete cone	Edge distance	Ccr,N	[mm]		1,5 h _{ef}	
failure	Spacing	Scr,N			3 h _{ef}	
Installation facto	r	γinst	[-]		1,0	
Concrete pryou	ıt failure					
Factor for pryout	t failure	k ₈	[-]	1,0	2	2,0
Concrete edge	failure					
Effective length	in concrete	$l_{\rm f} = h_{\rm nom}$	[mm]	65	85	100
Nominal diamete	er of screw	dnom	[mm]	8	10	12

¹⁾ Pullout failure not decisive.

Table C2.2: Characteristic values for Seismic Performance Category C2 Gap between screw shaft and fixture must be filled with mortar

FBS II A4				8	10	12
Nominal embed	ment depth	h _{nom}	[mm]	65	85	100
Steel failure for	r tension loa	ad and she	ear load C2			
		N _{Rk,s,eq}	[L.N.I]	27,8	43,8	67,7
Characteristic re	esistance	V _{Rk,s,eq}	[kN]	9,7	8,8	19,7
Pullout failure				· · · ·		
Characteristic re cracked concret		N _{Rk,p,eq}	[kN]	2,8	5,0	7,3
Concrete cone	failure					
Effective embed	ment depth	h _{ef}		52	68	81
Concrete cone	Edge distance	C _{cr,N}	[mm]	I	1,5 h _{ef}	
failure	Spacing	S _{cr,N}			3 h _{ef}	
Installation facto	r	γinst	[-]		1,0	
Concrete pryou	ut failure					
Factor for pryou	t failure	k ₈	[-]	1,0		2,0
Concrete edge	failure					
Effective length	in concrete	$I_{\rm f} = h_{\rm nom}$	[mm]	65	85	100
Nominal diameter	er of screw	dnom	[mm]	8	10	12
	fischer cor	ncrete scre	w ULTRA(CUT FBS II A4		Annex C2 of European
						Technical Assessment

Characteristic values for Seismic Performance Category C1 and C2

ETA-17/0740

FBS II A4						8		10			12	
Nominal embedm	ent deptl	h	h _{nom}	[mm]	50	65	55	65	85	60	75	100
Steel failure for	tension I	oad and	shear l	oad (F _{Rk,}	_{s,fi} = N _{Rk,s,}	$_{\rm fi} = V_{\rm Rk,s,fi}$						
			R30		2,3	6,4	3	,5	11,0	4	.,6	15,2
	US,	-	R60		1,8	4,7	2	,7	8,1	3	3,7	11,2
	USTX	F _{Rk,s,fi}	R90		1,3	2,9	2	,0	5,2	2	2,7	7,3
			R120		1,0	2,0	1	,6	3,8	2	2,2	5,3
			R30	[kN]	2	.,1		3,0				1
		F	R60		1	,7		2,3				
	SK	F _{Rk,s,fi}	R90		1	,2		1,6			-	
Characteristic			R120		1	,0		1,2				
resistance for the head shapes			R30		2,6	7,2	7	,6	15,4	1	6,8	25,3
	US,	N 40	R60		2,0	5,2	6	,0	11,4	1	3,3	18,7
	US TX	M ⁰ Rk,s,fi	R90		1,5	3,3	4	,4	7,3	ç	,8	12,1
			R120	[N loss]	1,2	2,3	3	,6	5,3		5,0	8,8
		R30 [Nm] 2,4		.,4	4,2					1		
	01/		R60		1	,9		3,2				
	SK	M ⁰ Rk,s,fi	R90		1	,4		2,2			-	
			R120		1	,1		1,7				
Pullout failure							-		I			
			R30									
Characteristic resistance	NI	R60	[]_N []	1,7	2,4	2,1	3,5	4,3	2,5	3,0	6,3	
	N _{Rk,p,fi}	R90	[kN]									
			R120	_	1,4	1,9	1,7	2,8	3,4	2,0	2,4	5,0
Concrete cone fa	ailure						<u>.</u>					
			R30									
Characteriatia rea	intonan	NI	R60	1,6	3,4	2,1	3,2	6,6	2,6	4,8	10,2	
Characteristic res	istance	N _{Rk,c,fi}										
			R120		1,3	2,7	1,7	2,6	5,3	2,1	3,8	8,1
Edge distance												
R30 to R120			Ccr,fi	[mm]					h _{ef}			
In case of fire atta	ack from	more tha	in one si	de, the m	inimum e	dge distar	ice shall	be≥3	00 mm			
Spacing R30 to R120			Scr,fi	[mm]				2	Ccr,fi			
Concrete pryout	failure		Sci,ii	[[]				2				
R30 to R120	lanaro		k ₈	[-]		1,0			2,0	1,0	2	,0
he anchorage de _l	oth has to	o be incre	eased fo		crete by a	t least 30	mm cor	npared	to the g	given val	ue.	
	fischer c	oncrete	screw U	LTRAC	UT FBS I	I A4					nex C3 uropean	
Characteristic values for resistance to fire							Technical Assessment ETA-17/0740					

FBS II A4			8		10			12		
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100
Tension load in uncracked concrete	Ν	[kN]	3,5	7,1	4,2	7,0	11,9	5,0	6,0	17,1
Displacement in uncracked	δνο	[mm]	0,5	0,7	0,4	0,6	0,8	1,0	0,9	1,25
concrete	δN∞	[mm] -	0,7	0,7	0,8	0,8	0,8	1,25	1,25	1,25
Tension load in cracked concrete	Ν	[kN]	3,5	4,5	4,2	7,0	8,1	5,0	6,0	12,0
Displacement in cracked	δΝΟ	[mm]	0,6	0,4	0,4	0,6	0,7	0,9	0,9	1,4
concrete	δ _{N∞}	[mm]	1,5	1,1	1,0	1,8	1,8	1,4	1,7	1,9

Table C4.2: Displacements due to shear loads (static and quasi-static)

FBS II A4			8	3	10				12		
Nominal embedment depth	h _{nom}	[mm]	50	65	55	65	85	60	75	100	
Shear load in cracked and uncracked concrete	V	[kN]	11,0	15,9	10,4	11,9	20,9	12,7	24,9	26,2	
Displacement	δ_{V0}	[mm]	4,1	2,7	1,2	1,2	3,5	1,1	2,5	2,9	
(the gap between fastener and fixture is subtracted)	δ _{V∞}	-[mm]	6,2	4,1	1,8	1,8	5,3	1,7	3,8	4,4	

Table C4.3: Displacements due to tension loads(Seismic Performance Category C2)

FBS II A4			8	10	12
Nominal embedment depth	h _{nom}		65	85	100
Displacement DLS	δ N,eq (DLS)	[mm]	0,9	0,9	1,1
Displacement ULS	δ N,eq (ULS)		2,5	2,7	3,2

Table C4.4: Displacements due to shear loads
(Seismic Performance Category C2)

FBS II A4			8	10	12
Nominal embedment depth	h _{nom}		65	85	100
Displacement DLS	$\delta \text{V,eq} \text{ (DLS)}$	[mm]	1,6	1,7	2,6
Displacement ULS	$\delta {\rm V,eq}~({\rm ULS})$		5,0	3,8	6,6

fischer concrete screw ULTRACUT FBS II A4

Displacements due to tension and shear loads

Annex C4 of European

Technical Assessment ETA-17/0740