

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-20/0321 of 19 June 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

fischer concrete screw ULTRACUT FBS II

Connector for Strengthening of existing concrete structures by concrete overlay

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

12 pages including 3 annexes which form an integral part of this assessment

EAD 332347-00-0601, Edition 12/2019

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-20/0321 English translation prepared by DIBt

Page 2 of 12 | 19 June 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 | 19 June 2020

European Technical Assessment ETA-20/0321 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Shear connector fischer concrete screw UTRACUT FBS II is a concrete screw made of galvanised steel anchored into a predrilled cylindrical drill hole in existing concrete. The special thread of the concrete screw cuts an internal thread into the member while setting. The fischer concrete screw UTRACUT FBS II is connecting two layers of concrete cast at different times (existing concrete and concrete overlay). The side with head of concrete screw is finally embedded in the concrete overlay.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Existing concrete:	
- resistances	See Annex C 1
- edge distance and spacing	See Annex B 3
Concrete overlay:	
- resistances	See Annex A 2 and C 2
 edge distance and spacing 	See Annex B 3
Shear interface parameter under static and quasi-static and fatigue cyclic loading	
- material and geometric parameters	See Annex C 2
- factor for fatigue cyclic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Γ	Essential characteristic	Performance
	Reaction to fire	Class A1

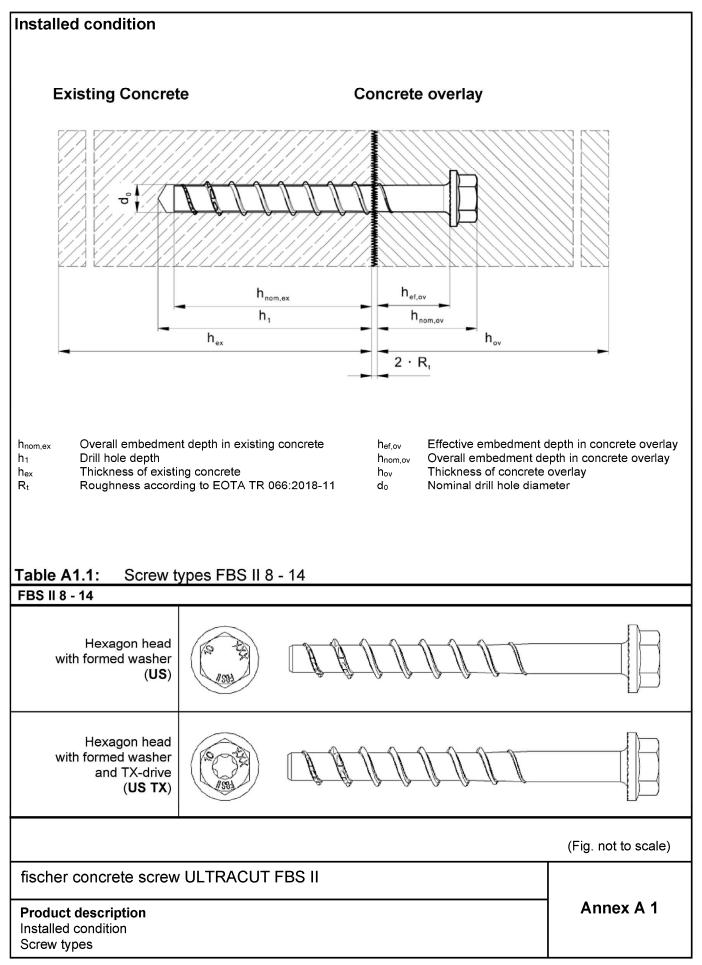
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 332347-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-20/0321 English translation prepared by DIBt

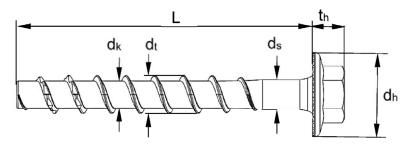
Page 4 of 12 | 19 June 2020


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

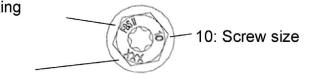
Issued in Berlin on 19 June 2020 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt*: Tempel

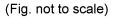


Page 6 of European Technical Assessment ETA-20/0321 of 19 June 2020

English translation prepared by DIBt



Sorow typos				All head	l shapes	
Screw types	/ SIZE		8	10	12	14
Thread outer diameter	dt		10,3	12,5	14,5	16,6
Core diameter	dĸ	[mm]	7,4	9,4	11,3	13,3
Shaft diameter	ds		8,0	9,9	11,7	13,7
Stressed cross section	As	[mm²]	43,0	69,4	100,3	138,9
Minimum length	L_{min}			h _{nom,ex} +	- 40 mm	•
Maximum length	L_{max}	[]	415	435	450	465
Diameter of the head	dh	[mm]	18	20,5	23	28
Height of the head	t _h		8,4	9,9	10,3	11,5
Material			H	ardened carbo	n steel; A₅% ≥ 8	3%
Coating		[-]		galva	nised	
Nominal characteristic steel yield strength	f _{yk}	[]]/m m 2]	800	750	750	750
Nominal characteristic steel ultimate tensile strength	f _{uk}	[N/mm²]	950	900	900	900



Product marking FBS II US (TX)

FBS II: Product marking

XXX: Screw length L

fischer concrete screw ULTRACUT FBS II

Product description Dimensions, material and marking Annex A 2

Specifications of intended use

Anchorages subject to:

- Static or quasi static actions
- Surface roughness "very smooth" to "very rough" of the shear interface according to EOTA Technical Report TR 066:2018-11

Base materials:

 For use to strengthen existing concrete by concrete overlay. Both concrete members are compacted reinforced or unreinforced normal weight (cracked and uncracked) concrete without fibres in the range C20/25 to C50/60 according to EN 206:2013+A1:2016.

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the screw is indicated on the design drawings (e.g. position of the screw relative to reinforcement or to supports, etc.).
- Post-installed shear connections are designed in accordance with EOTA Technical Report TR 066:2018-11
- For the concrete overlay the following requirements on the mixture according to TR 066:2018-11, chapter 3.2 apply:
 - Concrete compressive strength of the new concrete shall be higher than the concrete compressive strength of the existing concrete.
 - Use of concrete with low shrinkage is recommended.
 - Slump of fresh concrete $f \ge 380$ mm, a slump value $f \ge 450$ mm is recommended, if applicable.
 - Concrete consolidation with vibratory screed. With thickness of the overlay concrete > 10 cm specific vibratory screed must be checked for its maximum working depth.
 - Very good posttreatment.

Installation:

- The screw installation is executed by trained personal, ensuring that the installation instruction and the specifications by the engineer are observed.
- Hammer drilling, hollow drilling or diamond drilling: All sizes and embedment depths
- Screw installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site
- · Cleaning of drill hole is not necessary when using a hollow drill with functional suction or:
 - If drilling vertically upwards
 - If drilling vertically downwards and the drill hole depth has been increased. It is recommended to increase the drill hole depth with additional 3 d_0 .
- The requirements for construction works given in EOTA Technical Report TR 066:2018-11 have to be observed.

fischer concrete screw ULTRACUT FBS II

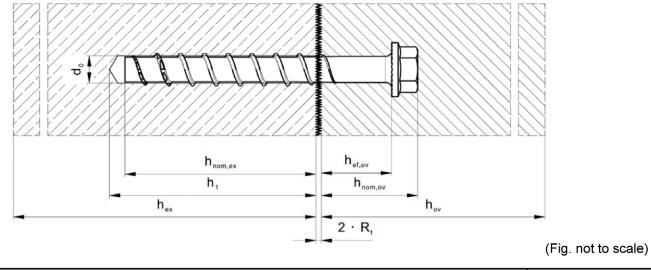
Intended use

Specifications

Annex B 1

Г

Size								FBS II					
Size			8	3		10			12			14	
Nominal embedment depth	$\mathbf{h}_{nom,ex}$		50	65	55	65	85	60	75	100	65	85	115
Nominal drill hole diameter	d₀		8	3		10			12			14	
Cutting diameter of drill bits		[mm]	8,4	45		10,45			12,50			14,50	
Cutting diameter of diamond driller	d _{cut} ≤	[]	8,	10		10,30			12,30			14,30	
Wrench size (US, S)	SW		1	3		15			17			21	
TX size	ТΧ	[-]	4	0		50					-		
Drill hole depth			60	75	65	75	95	70	85	110	80	100	130
Drill hole depth (for vertical downwards installation without cleaning)	_ h₁≥	[mm]	85	100	105	115	135	95	130	155	130	150	180
Longth of corour	L _{min} =		90	105	95	105	125	100	115	140	105	125	155
Length of screw	L _{max} =		400	415	405	415	435	410	425	450	415	435	465
Torque impact wrench	T _{imp,max}	[Nm]	60	00					650				


Table B2.2: Installation parameters FBS II 8 – 14 in concrete overlay

				FBS II	
				LDO II	
		8	10	12	14
h _{ef,ov,min}				40	
h _{ef,ov,max}	[mm]		L-	h _{nom,ex} – 2 R _t	
$\mathbf{h}_{nom,ov}$]			h _{ef,ov} + L _h	
$\mathbf{h}_{\min,ov}$			h _n	om,ov + Cnom ¹⁾	
	hef,ov,max h _{nom,ov} h _{min,ov}	h _{ef,ov,max} h _{nom,ov} h _{min,ov}	h _{ef,ov,max} h _{nom,ov} h _{min,ov}	h _{ef,ov,min} h _{ef,ov,max} h _{nom,ov} h _{min,ov} h _{min,ov}	$\begin{array}{c c} h_{ef,ov,min} \\ \hline h_{ef,ov,max} \\ \hline h_{nom,ov} \\ \hline \end{array} \begin{array}{c} 1 \\ \hline \\$

¹⁾ Nominal concrete cover according to EN 1992-1-1:2004 + AC:2010

Concrete overlay

fischer concrete screw ULTRACUT FBS II

Intended use Installation parameters FBS II 8 - 14 Г

Size								FBS	S				
SIZE			8	3		10			12			14	
Existing Concrete													
Nominal embedment depth	$h_{\text{nom,ex}}$		50	65	55	65	85	60	75	100	65	85	115
Minimum thickness of concrete member	$h_{\text{min},\text{ex}}$	[mm]	100	120	100	120	140	110	130	150	120	140	180
Minimum spacing	Smin,ex		3	5		40			50			60	
Minimum edge distance	C _{min,ex}		3	5		40			50			60	
Concrete Overlay													
Minimum thickness of concrete member	$\mathbf{h}_{min,ov}$						h	nom,ov +	Cnom ¹⁾				
Minimum spacing	S min,ov	[[mm]	4	0		40			45			55	
Minimum edge distance	Cmin.ov]	10 + 0	Cnom ¹⁾	10) + Cnon	n 1)	15	5 + Cnon	1)		15 + cn	om ¹⁾

¹⁾Nominal concrete cover according to EN 1992-1-1:2004 + AC:2010

Intended use Minimum member thickness, minimum spacing and edge distance

Annex B 3

Installation instruction	
.l.	Step 1: Creation of the drill hole:
	Drill a hole to the required setting depth using a hammer drill bit, hollow drill bit or a diamond drill bit.
	Step 2: Cleaning of the drill hole - horizontal:
	Clean the drill hole. This step can be omitted in the preparation of the hole by using a hollow drill bit. (recommendation: use the fischer FHD hollow drill bit)
	Step 2: Cleaning of the drill hole - vertical:
3xd ₀	Cleaning of the drill hole can be omitted, if drilling vertically upwards or if drilling vertically downwards and the hole depth has been increased. We recommend increasing the drill hole depth by an additional $3 \times$ drilling ø when drilling vertically downwards.
	Step 3: Installation via Impact Wrench:
	Installation with any impact wrench at a max. mentioned torque moment (T _{imp, max}) and with simultaneous axial pressure on the impact wrench. (recommendation: use the fischer FSS 18V 400BL)
	Step 4: Installation on the right depth:
$h_{ef, ov}$ h_2 $h_{nom, ex}$	First, install the concrete screw FBS II in the existing concrete to the defined setting depth $h_{nom,ex}$, while ensuring the desired setting depth $h_{ef,ov}$ is fulfilled in the top concrete layer (for an easy installation it is allowed to use the fischer setting tool SC-ST).
	Process after the installation of the screw:
	After installing the concrete screw, further work can be completed on the reinforcements and using the top concrete layer. ATTENTION: In accordance with TR 066: 2018-11, the requirements for properties of the composite surface and concrete mixture must be observed.
	,

fischer concrete screw ULTRACUT FBS II

Intended use

Installation instructions

Annex B 4

Electronic copy of the ETA by DIBt: ETA-20/0321

Table C1.1:		eristic ten concrete	sion r	esista	ance	unde	r stat	ic and	l qua	si-sta	itic ac	tion i	n the	
Cine									FBS II					
Size				8	3		10			12			14	
Nominal embedn	nent depth	h _{nom,ex}	[mm]	50	65	55	65	85	60	75	100	65	85	115
Steel failure														
Characteristic res	sistance	$N_{Rk,s,ex}$	[kN]	3	5		55			76			103	
Partial factor		γMs,N,ex	[-]						1,4					
Pullout failure														
Characteristic resistance in	uncracked	$N_{Rk,p,ex}$	[kN]					≥	N ⁰ Rk,c,	ex				
concrete C20/25	cracked	$N_{Rk,p,ex}$		6	12	9	12			≥	N ⁰ Rk,c,	ex		
-	C25/30	_							1,12					
	C30/37	-							1,22					
Increasing	C35/45	− Ψc.ex	1.32											
factors concrete	C40/50		[-]						1,41					
	C45/55	-							1,50					
	C50/60	-							1,58					
Installation factor		γinst	[-]						1,0					
Concrete cone f	ailure and s	plitting fai	lure											
Effective embedr	nent depth	h _{ef,ex}	[mm]	40	52	43	51	68	47	60	81	50	67	93
Factor for uncrac concrete	ked	kucr,N,ex	[-]						11,0					
Factor for cracke	d concrete	k cr,N,ex							7,7					
Characteristic ed	ge distance	C cr,N,ex						1	,5 h _{ef,e}	ex				
Characteristic sp	acing	Scr,N,ex							3 h _{ef,ex}	(
Charact. edge dis splitting	stance for	C _{cr,sp,ex}	[mm]					1	,5 h _{ef,e}	ex				
Charact. spacing	for splitting	Scr,sp,ex							3 h _{ef,ex}					

fischer concrete screw ULTRACUT FBS II

Performances

Characteristic tension resistance in the existing concrete

Annex C 1

overlay						BS II	
Size			F	8	<u>г</u>	12	14
Steel failure			I	-			l
Characteristic resistance	N _{Rk,s,o}	.v [ł	(N]	35,0	55,0	76,0	103,0
Partial factor	γMs,N,o	v	[-]			1,4	
Pullout failure			r				
Projected area of the head	Ah	·	nm²]	205	255	308	472
Concrete cone failure and split	tting fa	ailure					
Effective embedment depth min	$\mathbf{h}_{ef,ov}$	[m	ım²]			40	
Effective embedment depth max	$h_{\text{ef,ov}}$					m,ex -2 Rt	
Factor for uncracked concrete	kucr,N,o	ov	[-] -			12,7	
Factor for cracked concrete	kcr,N,ov	,				8,9	
Characteristic edge distance	Ccr,N,oc	;	-			5 h _{ef,ov}	
Characteristic spacing	Scr,N,ov				3	hef,ov	
Charact. edge distance for splitting	Ccr,sp,ov	v [[nm]		3	h _{ef,ov}	
Charakt. spacing for splitting	Scr,sp,ov	v	F		6	h _{ef,ov}	
Blowout failure	- 01,00,0	•			-		
Projected area of the head	Ah	nJ	m²]	205	255	308	472
action	stic sh	iear res	stanc		interface unde		
action	stic sh	iear res	istanc	ce in the i	FB	S II	uasi-static
	stic sh	iear res					
action Size Characteristic yield strength Product specific factor for				ce in the i	FB:	S II 12 750	uasi-static
action Size Characteristic yield strength Product specific factor for ductility Stressed cross section	f _{yk}	[N/mm²]		ce in the i	FB: 10 750	S II 12 750	uasi-static
action Size Characteristic yield strength Product specific factor for ductility	f _{yk} α _{k1}	[N/mm²] [-]		ce in the i <u>8</u> 800	FB 10 750 0,	S II 12 750 8 100,3	uasi-static 14 750
action Size Characteristic yield strength Product specific factor for ductility Stressed cross section Product specific factor for	f _{yk} α _{k1} As	[N/mm ²] [-] [mm ²]		ce in the i <u>8</u> 800	FB 10 750 0, 69,4	S II 12 750 8 100,3	uasi-static 14 750

Characteristic tension resistance in the concrete overlay Characteristic shear resistance in the interface