

NNA

In accordance with ISO 14025 and EN 15804

| Programme:               | The International EPD <sup>®</sup> System, <u>www.environdec.com</u> |
|--------------------------|----------------------------------------------------------------------|
| Programme operator:      | EPD International AB                                                 |
| EPD registration number: | S-P-02178                                                            |
| Publication date:        | 2021-01-07                                                           |
| Valid until:             | 2025-01-07                                                           |



# **EPD Profile**









### **EPD Owner**

Knauf Danogips GmbH Sara Ervasti Senior product- and sustainability specialist +46 44 28-7810 sara.ervasti@knauf.se Fyrgatan, 296 80 Åhus, Sweden

### **EPD Programme**

The International EPD® System

EPD International AB Box 210 60 SE-100 31 Stockholm Sweden www.environdec.com info@environdec.com

### **EPD Producer**

DGE Mark och Miljö Box 258 <u>391 23 Ka</u>lmar

### **Third party Verifier**

Pär Lindman, Miljögiraff AB Approved by: The International EPD<sup>®</sup> System

**Product category rules (PCR):** The International EPD System PCR for Construction Products and Construction Services 2012:01, version 2.33.

Independent third-party verification of the declaration and data, according to ISO 14025:2006:  $\Box$  EPD process certification  $\boxtimes$  EPD verification

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804.

# **Company information**

### **Description of the organisation**

The Knauf Group is a family-run, global company with 220 production sites worldwide and one of Europe's leading manufacturers of construction products, producing mainly products made of cement, lime and plaster and thermal insulating materials. In Sävsjö and Åhus, Sweden, Knauf Danogips develops, produces and sells steel profile systems for constructions in a wide range of construction applications. Knauf Danogips GmbH is certified according to SS EN ISO 9001:2015, SS EN ISO 14001:2015 and OHSAS 18001:2007.

### Name and location of production site

Knauf Danogips' steel profile systems are produced at their production site in Sävsjö, Sweden and distributed from their production site in Åhus, Sweden.

## **EPD Product information**

**Product name and identification:** This EPD covers steel profile systems produced by Knauf Danogips GmbH at the facility in Sävsjö, Sweden. A list over these products is attached in Appendix A.

Product description: Steel profile systems are construction products used as e.g. beams, struts and attachments and come in different varieties to meet different performance requirements. Properties such as load-bearing, acoustic insulation and mechanical properties vary between different systems. The steel profile systems from Knauf Danogips are made of zinc-coated steel sheets, cut and bent to attain the right dimensions and characteristics. Some profiles additionally have a polyethylene sheet attached. The functional unit is modelled to represent an average of all products in the product category of steel profile systems from Knauf. Figure 1 shows an illustration of one of the products covered by this EPD.

Figure 1. Illustration of one of the products within the product category Steel profile systems, for which this EPD is valid.

UN CPC code: 42190

# LCA information

**Functional unit / declared unit:** The declared unit is 1 kg of steel profile systems from Knauf.

#### Reference service life: 50 years

**Time representativeness:** The specific data for the products and mass flows used for this EPD is from 2020. All specific and generic data used for modelling are representative for the past five years or more recently.

**Geographical scope:** The end-of-life scenario for the products has been calculated for scenarios in Sweden.

**Database(s) and LCA software used:** The LCA software SimaPro 9.1.0 was used for this study, with data from the database Ecoinvent 3.5

**Description of system boundaries:** All life cycle stages from raw material extraction to the transportation of the finished product to the construction site are included, plus the end of life scenario. The scope is therefore a Cradleto-gate with options; stages A1-A4, B1-B7, C1-C4.

**Excluded lifecycle stages:** A5 was excluded, since data was not available for this stage.

### Standards:

The LCA is performed in accordance with the requirements of the following standards:

- ISO 14040:2006
- ISO 14044:2006
- EN 15804:2012+A1:2013
- PCR for Construction Products and Construction Services 2012:01(2.33).

#### More information:

In accordance with the PCR, more than 95% of total inflows of mass and energy has been included in this Life Cycle Inventory. None of the raw materials used in the products hold SVHCs (Substances of Very High Concern). If demolition of the effete product is conducted with care, the product could be reused. The recyclability of the packaging is 100%.

For more information about the EPD owner, visit www.knaufdanogips.se.

For more information about the EPD Programme, visit www.environdec.com

For more information about the EPD producer, visit www.dge.se.

For more information about the underlying LCA study, contact the LCA practitioner Helena Lindh (helena.lindh@dge.se).



Figure 2. The concept of Life Cycle Assessment.

## System diagram

| Raw material            | Manufacturing | Usage             | End-of-life      |
|-------------------------|---------------|-------------------|------------------|
| Finland                 | Knauf, Sävsjö | Construction site |                  |
| Zinc-coated steel sheet | Electricity   | Installation      | Waste processing |
| Netherlands             | Cutting fluid |                   | Disposal         |
| Zinc-coated steel sheet |               | Usage             |                  |
| Italy                   | Packaging     | Demolition        | Recycling        |
| PE-sheet                |               |                   |                  |
| Sweden                  | Steel scrap   |                   |                  |
| Plastic hoops           | Knauf, Åhus   |                   |                  |
| Wooden supports         | Storage       |                   | Transport        |
|                         |               |                   |                  |
|                         |               |                   | System boarders  |
|                         |               |                   | Packaging        |

Figure 3. Flow diagram of the product life cycle, beginning with raw material collection through extraction, followed by manufacturing, usage and end-of life. Each step of the life cycle is described in further detail below.

| Table 1. Table declaring the life cycle stages included in the EPD. X= included in the EPD, MND=Module Not |  |
|------------------------------------------------------------------------------------------------------------|--|
| Declared                                                                                                   |  |

| Proc          | Product stage |               | Construction<br>process<br>stage |                           |           | Use stage   |        |             |               | Ш                      | nd of l               | ife stag        | je        | Resource<br>recovery<br>stage |          |                                        |
|---------------|---------------|---------------|----------------------------------|---------------------------|-----------|-------------|--------|-------------|---------------|------------------------|-----------------------|-----------------|-----------|-------------------------------|----------|----------------------------------------|
| Raw materials | Transport     | Manufacturing | Transport                        | Construction-Installation | Use stage | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction | Transport | Waste processing              | Disposal | Reuse-recovery-<br>recycling-potential |
| A1            | A2            | A3            | A4                               | A5                        | B1        | B2          | B3     | B4          | B5            | B6                     | B7                    | C1              | C2        | C3                            | C4       | D                                      |
| Х             | Х             | Х             | Х                                | MND                       | Х         | Х           | Х      | Х           | Х             | Х                      | Х                     | Х               | Х         | Х                             | Х        | MND                                    |

# Description of life cycle stages A1-A3: Raw material extraction and supply, transport and manufacture

Table 2. Description of life cycle stages A1, A2 and A3, covering the upstream and core processes of the product life cycle.

| Stage               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1<br>Raw materials | Extraction and processing of raw material occurring upstream from the manufacturing process, including the energy generation needed for these processes (extraction, refining and transport of energy from primary energy sources). Recycling processes of secondary materials from a previous product system that are used in the manufacturing process are also included, however processes that are part of the waste processing in the previous product system are excluded, referring to the polluter-pays principle. |
| A2<br>Transport     | The external transportation of raw materials to the manufacturing site. The modelling includes transportation with truck, train and ship with processes for each supplier.                                                                                                                                                                                                                                                                                                                                                 |
| A3<br>Manufacturing | The manufacturing process, including the use of packaging materials and treatment of waste generated in this process up to the end-of-waste state or disposal of final residues, including any packaging not leaving the factory gate with the product. Production and transport of manufacturing fuels to the manufacturing site is included, as well as the recycling process of purchased recycled material, and recycled material transported to the manufacturing site.                                               |

# Description of life cycle stage A4: Transport from production gate to construction site

| Stage                                            | Parameter                       | Value                                      |
|--------------------------------------------------|---------------------------------|--------------------------------------------|
|                                                  | Vehicle type used for transport | 42-ton sized truck, EURO 6 emission class. |
|                                                  | Vehicle load capacity           | 28 ton                                     |
| A4                                               | Gross vehicle weight            | 34 ton                                     |
| Transport from<br>production gate to<br>customer | Fuel type and consumption       | Diesel: 0,01699 kg/tonkm                   |
|                                                  | Distance to customer            | An average distance of 350 km is assumed   |
|                                                  | Capacity utilization factor     | 0,71                                       |

Table 3. Description of life cycle stage A4 – the first downstream process of the product life cycle

### **Description of life cycle stage B1-B7: Usage stages**

During the seven usage stages of the products' life cycle, they need neither maintenance, repair, replacement, refurbishment nor use energy or water. Hence, there is no contribution to the life cycle impact of the product from this life cycle stage.

### Description of life cycle stage C1-C4: End of life stages

The End-of-life scenario used in this EPD is presented in Table 5. However, if demolition of the effete product is conducted with care, the product could be reused. Additionally, the packaging materials are 100% recyclable.

Table 4. Description of life cycle stages C1-C4, covering the final downstream processes i.e. the end of life stages of the product life cycle.

| Stage                | Description                                                                                                                            | Parameter                                  | Value                                                      |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|
| C1<br>Deconstruction | Deconstruction including demolition of<br>the product from the construction,<br>including initial on-site sorting of the               | Collection process                         | 95% collected separately for metal recycling               |
| Deconstruction       | materials.<br>Propane fueled building machine,<br>0,0359 MJ/kg assumed.                                                                | specified by type                          | 5% collected with mixed<br>construction waste              |
| C2<br>Transport      | Transportation of the discarded product<br>to a recycling site, and transportation of<br>waste to final sorting yard or disposal       | Assumptions<br>for scenario<br>development | units as appropriate                                       |
|                      |                                                                                                                                        |                                            | 0% for re-use                                              |
| C3                   | Collection of waste fractions from deconstruction, as well as processing of                                                            | Recovery<br>system                         | 95% for recycling                                          |
| Waste<br>processing  | material flows intended for reuse, recycling and energy recovery                                                                       | specified by<br>type                       | 0% for energy recovery                                     |
|                      |                                                                                                                                        |                                            | Packaging:<br>80% for energy recovery<br>20% for recycling |
| C4<br>Disposal       | Waste disposal, including physical pre-<br>treatment and management of the<br>disposal site, as well as emissions from<br>the disposal | Disposal<br>specified by<br>type           | 5% for landfill                                            |

# **Environmental performance**

# Knauf steel profile systems

## **Environmental impact**

 Table 5. The results from the LCA showing the environmental impacts from the steel profile systems during the different life cycle stages.

| Impact<br>Categor |                                                                                              | A1-A3          | A4       | B1-B7    | C1           | C2             | C3              | C4            | TOTAL       |
|-------------------|----------------------------------------------------------------------------------------------|----------------|----------|----------|--------------|----------------|-----------------|---------------|-------------|
| AP                | kg SO₂ eq.                                                                                   | 5,27E-03       | 7,08E-05 | 0,00E+00 | 7,92E-06     | 3,12E-05       | 6,51E-06        | 8,10E-06      | 5,40E-03    |
|                   |                                                                                              | 97,7%          | 1,3%     | 0,0%     | 0,1%         | 0,6%           | 0,1%            | 0,2%          | -,          |
|                   |                                                                                              | 6,69E-04       | 1,52E-05 | 0,00E+00 | 1,49E-06     | 6,54E-06       | 3,79E-06        | 6,51E-06      |             |
| EP                | kg PO₄³ eq.                                                                                  | 95,2%          | 2,2%     | 0,0%     | 0,2%         | 0,9%           | 0,5%            | 0,9%          | 7,03E-04    |
|                   | ha 00 ar                                                                                     | 2,42E+00       | 2,59E-02 | 0,00E+00 | 3,12E-03     | 8,72E-03       | 1,03E-03        | 1,07E-02      | 0.475.00    |
| GWP               | kg CO₂ eq.                                                                                   | 98,0%          | 1,0%     | 0,0%     | 0,1%         | 0,4%           | 0,0%            | 0,4%          | 2,47E+00    |
| DOCD              |                                                                                              | 5,31E-04       | 4,07E-06 | 0,00E+00 | 8,87E-07     | 1,43E-06       | 2,22E-07        | 2,44E-07      | E 20E 04    |
| POCP              | kg C₂H₄ eq.                                                                                  | 98,7%          | 0,8%     | 0,0%     | 0,2%         | 0,3%           | 0,0%            | 0,0%          | 5,38E-04    |
| ADPE              | kg Sb eq.                                                                                    | 9,14E-05       | 5,07E-08 | 0,00E+00 | 1,20E-09     | 2,61E-08       | 1,62E-09        | 1,10E-09      | 0.445.05    |
| AUPE              | ky Sb eq.                                                                                    | 99,9%          | 0,1%     | 0,0%     | 0,0%         | 0,0%           | 0,0%            | 0,0%          | 9,14E-05    |
|                   | MJ                                                                                           | 2,63E+01       | 4,25E-01 | 0,00E+00 | 4,02E-02     | 1,32E-01       | 1,14E-02        | 1,46E-02      |             |
| ADPF              | MJ                                                                                           | 97,7%          | 1,6%     | 0,0%     | 0,1%         | 0,5%           | 0,0%            | 0,1%          | 2,69E+01    |
|                   | kg CFC-11                                                                                    | 1,07E-08       | 5,20E-09 | 0,00E+00 | 4,91E-10     | 1,61E-09       | 1,13E-10        | 1,73E-10      | 4 995 99    |
| ODP               | eq.                                                                                          | 58,6%          | 28,4%    | 0,0%     | 2,7%         | 8,8%           | 0,6%            | 0,9%          | 1,83E-08    |
| AP                | Acidification poten                                                                          | tial           |          |          | ADPE A       | biotic depleti | on potential    | - Elements    |             |
| EP                | Eutrophication potential         ADPF         Abiotic depletion potential – Fossil resources |                |          |          |              |                |                 | ources        |             |
| GWP               | Global warming po                                                                            | otential (100a | a)       |          | <b>ODP</b> D | epletion pote  | ential of the s | stratospheric | ozone layer |
| POCP              | Formation potential of tropospheric ozone                                                    |                |          |          |              |                |                 |               |             |

### Knauf steel profile systems

### Use of resources

Table 6. The results from the LCA showing the resource consumption from Knauf's steel profile systems throughout the life cycle.

| Resource<br>use | Unit                                                                 | A1-A3       | A4           | B1-B7         | C1       | C2       | C3           | C4           | TOTAL    |
|-----------------|----------------------------------------------------------------------|-------------|--------------|---------------|----------|----------|--------------|--------------|----------|
| PERE            | MJ                                                                   | 1,34E+00    | 4,58E-03     | 0,00E+00      | 3,08E-04 | 1,41E-03 | 3,32E-03     | 2,70E-04     | 1,35E+00 |
| PERM            | MJ                                                                   | 1,81E-01    | 0,00E+00     | 0,00E+00      | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 1,81E-01 |
| PERT            | MJ                                                                   | 1,52E+00    | 4,58E-03     | 0,00E+00      | 3,08E-04 | 1,41E-03 | 3,32E-03     | 2,70E-04     | 1,53E+00 |
| PENRE           | MJ                                                                   | 1,78E+01    | 4,33E-01     | 0,00E+00      | 4,07E-02 | 1,34E-01 | 2,06E-02     | 1,50E-02     | 1,84E+01 |
| PENRM           | MJ                                                                   | 4,52E-01    | 0,00E+00     | 0,00E+00      | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 4,52E-01 |
| PENRT           | MJ                                                                   | 1,82E+01    | 4,33E-01     | 0,00E+00      | 4,07E-02 | 1,34E-01 | 2,06E-02     | 1,50E-02     | 1,89E+01 |
| SM              | kg                                                                   | 8,17E-02    | 0,00E+00     | 0,00E+00      | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 8,17E-02 |
| RSF             | MJ                                                                   | 1,17E-05    | 0,00E+00     | 0,00E+00      | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 1,17E-05 |
| NRSF            | MJ                                                                   | 1,12E-04    | 0,00E+00     | 0,00E+00      | 0,00E+00 | 0,00E+00 | 0,00E+00     | 0,00E+00     | 1,12E-04 |
| FW              | m³                                                                   | 2,61E-03    | 9,31E-05     | 0,00E+00      | 3,91E-06 | 2,27E-05 | 5,92E-06     | 4,01E-05     | 2,77E-03 |
| PERE            | Renewa                                                               | ble primary | energy as ei | nergy carrier | •        | SM Us    | e of seconda | ry material  |          |
| PERM            | Renewa                                                               | ble primary | energy used  | as material   |          | RSF Us   | e of renewab | le secondary | fuels    |
| PERT            | Total renewable primary energy use     FW     Net use of fresh water |             |              |               |          |          |              |              |          |
| PENRE           | Non-renewable primary energy as energy carrier                       |             |              |               |          |          |              |              |          |
| PENRM           | Non-renewable primary energy used as material                        |             |              |               |          |          |              |              |          |
| PENRT           | Total no                                                             | n-renewable | primary en   | ergy use      |          |          |              |              |          |

# Waste production and output flows

### Knauf steel profile systems

### Waste production

Table 7. The results from the LCA showing the waste production from the steel profile systems during the different life cycle stages.

| Wastes  | Unit    | A1-A3        | A4       | B1-B7     | C1          | C2           | C3            | C4            | TOTAL       |
|---------|---------|--------------|----------|-----------|-------------|--------------|---------------|---------------|-------------|
| HWD     | kg      | 3,30E-02     | 1,41E-06 | 0,00E+00  | 0,00E+00    | 3,33E-07     | 0,00E+00      | 0,00E+00      | 3,30E-02    |
| NHWD    | kg      | 1,50E-01     | 2,63E-02 | 0,00E+00  | 0,00E+00    | 6,06E-03     | 0,00E+00      | 4,95E-02      | 2,32E-01    |
| RWD     | kg      | 4,86E-04     | 0,00E+00 | 0,00E+00  | 0,00E+00    | 0,00E+00     | 0,00E+00      | 0,00E+00      | 4,86E-04    |
| HWD Haz | zardous | waste dispos | ed NH    | IWD Non-h | azardous wa | ste disposed | <b>RWD</b> Ra | dioactive was | te disposed |

### **Output flows**

Table 8. The results from the LCA showing the output flows from the steel profile systems during the different life cycle stages.

| Output<br>flows | Unit      | A1-A3           | A4       | B1-B7    | C1       | C2        | C3             | C4       | TOTAL    |
|-----------------|-----------|-----------------|----------|----------|----------|-----------|----------------|----------|----------|
| CFR             | kg        | 0,00E+00        | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00       | 0,00E+00 | 0,00E+00 |
| MFR             | kg        | 1,28E-03        | 4,52E-04 | 0,00E+00 | 0,00E+00 | 1,04E-04  | 9,42E-01       | 0,00E+00 | 9,44E-01 |
| MER             | kg        | 8,71E-04        | 6,31E-04 | 0,00E+00 | 1,85E-05 | 1,49E-04  | 0,00E+00       | 2,01E-02 | 2,17E-02 |
| EE              | MJ        | 0,00E+00        | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00  | 0,00E+00       | 0,00E+00 | 0,00E+00 |
| CFR             | Compon    | ents for re-us  | e        | -        | MEF      | R Materia | als for energy | recovery |          |
| MFR             | Materials | s for recycling | J        |          | EE       | Exporte   | ed energy      |          |          |

## References

General Programme Instructions of the International EPD® System. Version 3.0.

EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products

The International EPD System PCR for Construction Products and CPC 54 Construction Services 2012:01, version 2.33

ISO 14040. (2006). *Environmental Management – Life cycle assessment – Principles and framework* (SS-EN ISO 14040:2006). Stockholm, Sweden.: Swedish Standards Institute (SIS förlag AB).

ISO 14044. *Environmental Management – Life cycle assessment – Requirements and guidelines (SS-EN ISO 14044:2006)*. Stockholm, Sweden: Swedish Standards Institute (SIS förlag AB).

Lindh, H. & Kjellberg, N. (2020) *Knauf Steel profile systems - LCA*. Life Cycle Assessment made for Knauf Danogips GmbH by DGE Mark & Miljö

Michael Ioelovish (2018) Energy Potential of Natural, Synthetic Polymers and Waste Materials – A Review. Academ J Polym Sci. 1(1):555553.

Phyllis2, database for physio-chemical compositions. Created by TNO, a Dutch Techcentre for life sciences, co-funded by the EU 7th Framework Programme. Available at: https://phyllis.nl/Browse

Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B., 2016. *The ecoinvent database version 3 (part I): overview and methodology*. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230.

Available at: http://link.springer.com/10.1007/s11367-016-1087-



# Appendix A

Table A1 lists the steel profile system products from Knauf Danogips for which this EPD is valid.

Table A1. The steel profile system products covered by this EPD.

Products covered in this EPD

| Skena SK                           |
|------------------------------------|
| Skena SKP                          |
| Skena SKT                          |
| Skena med urklipp SKU              |
| Förstärkningsskena FSK             |
| Förstärkningsskena FSKP            |
| Standardregel R                    |
| Akustikregel AR                    |
| Multiregel MR                      |
| Dörregel DR                        |
| Hörnregel HR                       |
| Hörnregel med tätlister HRT        |
| Förstärkningsregel FR              |
| Vinkelprofil H                     |
| Vinkelprofil HP                    |
| T-skarv                            |
| Hörnskydd HSK                      |
| L-profil LP                        |
| Pelarhörnlist PHL                  |
| Primärprofil P                     |
| Sekundärprofil S                   |
| Akustikprofil AP                   |
| Primär-/sekundärprofil CD-2        |
| CD-1 tvärprofil för CD-taksystem   |
| Skena YSK                          |
| Ytterväggsskena polyetenklädd YSKP |
| Ytterväggsregel YR                 |
| Ytterväggsregel polyetenklädd YRP  |
| Ytterväggsregel karm YRK           |
| Påsalningsprofil PZ                |
| Påsalningsprofil PU                |
| Avväxlingsprofil AV                |
| Nail It Spikskena U                |
| Nail It Spikskena Polyeten UP      |
| Nail It Spikskena urklipp UD       |
| Nail It Dörregel CD                |
| Nail It Spikregel C                |



