CHEMICAL ANCHOR ECM

Product description

ESSVE ECM is a styrene-free polyester resin mortar delivered in a 2-component foil tube cartridge system. The product is compatible with a hand-, battery-, or pneumatic tool and a static mixer. It is designed as a cost-effective alternative for the anchoring of threaded rods and internal threaded rod sleeves for approved applications. An easy and safe application in hollow bricks is guaranteed when combined with a perforated sleeve. After full curing application in environments with base material temperature range -40°C to +80°C is possible.

Properties and benefits

- European Technical Assessment for use in masonry: ETA-18/0638
- European Technical Assessment for use in uncracked concrete: ETA-18/0639
- Installation in water-filled bore holes (e.g. rain water)
- Overhead application
- Suitable for attachment points close to the edge, since anchoring is free of expansion forces
- Reduced chemical resistance
- · High bending- and pressure strength

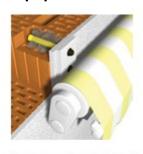
Applications samples

Suitable for the fixation of facades, roofs, wood construction, metal construction; metal profile, console, railing, sanitary devices, cable trays, piping, etc.

Handling and storage

Storage: store in a cold and dark place, storage temperature: from +5°C up to +25°C

Shelf life: Minimum 3 months for foil tubes


Cartridge can be reused up to the end of the shelf life by replacing the static mixer or resealing cartridge with the screw cap

CHEMICAL ANCHOR ECM

Applications and intended use

Base material:

Uncracked concrete, light-concrete, porous-concrete, solid masonry, hollow brick, natural stone (Attention! natural stone, can discolour; shall be checked in advance); hammer drilled holes

Anchor elements:

Threaded rods (zinc plated or hot dip, stainless steel and high corrosion resistance steel), reinforcing bars, internal threaded rods, profiled rod, steel section with undercuts (e.g. perforated section)

Temperature range:

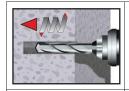
Installation temperature 0°C up to +40°C , see curing time below

Cartridge temperature: +5°C to +40°C

Base material temperature after full curing: -40°C to +80°C

Mortar properties

Properties	Test Method	Result
UV resistance		Pass
Water tightness	EN 12390-8	0 mm
Temperature stability		120 °C
pH-value		> 12
Density		1,79 kg / dm³
Compressive strength	EN 196 -1	88 N / mm²
Flexural strength	EN 196 -1	31 N / mm²
E-modulus	EN 196 -1	14000 N / mm²

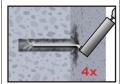

Curing time

Temperature of base material	Max. working time	Min. curing time				
0 °C to +4°C	45 Min.	3 h				
+5 °C to +9°C	25 Min.	2 h				
+10 °C to +14°C	20 Min.	100 Min.				
+15 °C to +19°C	15 Min.	80 Min.				
+20 °C to +29°C	6 Min.	45 Min.				
+30 °C to +34°C	4 Min.	25 Min.				
+35 °C to +39°C	2 Min.	20 Min.				
Cartridge temperature	+5°C to +40°C					


CHEMICAL ANCHOR ECM

Usage instructions – concrete

1. Drill with hammer drill mode a hole into the base material to the size and embedment depth required by the selected anchor (see page 6). In case of aborted drill hole: the drill hole shall be filled with mortar

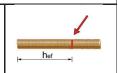


Attention! Standing water must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (see page 6) a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand pump can only be used for anchor sizes up to bore hole diameter 20 mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes.

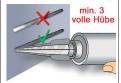
2b. Check brush diameter (page 6) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b,min} (see page 6) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used.

2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump a minimum of four times. If the bore hole ground is not reached an extension shall be used. The hand pump can only be used for anchor sizes up to bore hole diameter 20 mm or embedment depth up to 240mm. Compressed air (min. 6 bar) can be used for all sizes.


or

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning has to be repeated directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

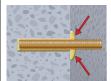
3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. After every working interruption longer than the recommended working time as well as for new cartridges, a new static-mixer shall be used.



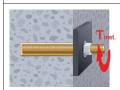
4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

CHEMICAL ANCHOR ECM

Usage instructions – concrete

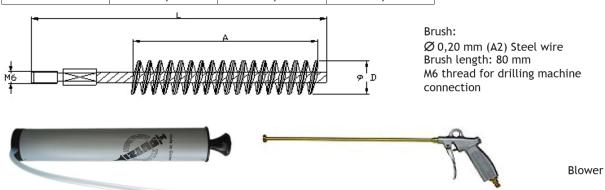

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

6. Starting from the bottom resp. back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw of the static mixing nozzle as the hole is filled avoids creating air pockets. For embedments larger than 190mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes bigger than 20mm resp. deeper than 240mm a piston plug shall be used. Observe the gel-/ working times given.


7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed.

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured.



10. After full curing, the add-on part can be installed with the max. torque by using a calibrated torque wrench.

Cleaning of the drill hole – concrete

Threaded rod	readed rod Bore hole-∅		Min. brush-∅
(mm)	(mm)	d _b (mm)	d _{b,min} (mm)
M 8	10,0	12,0	10,5
M 10	12,0	14,0	12,5
M 12	14,0	16,0	14,5
M 16	18,0	20,0	18,5
M 20	24,0	26,0	24,5
M 24	28,0	30,0	28,5

Setting parameter

Anchor size (Threaded r	Anchor size (Threaded rod)				M10	M12	M16	M20	M24
Edge distance	1,0 x h _{ef}	C _{cr,N}	[mm]	80	90	110	125	170	210
Min. edge distance	5,0 x d	$C_{\scriptscriptstyle{min}}$	[mm]	40	50	60	80	100	120
Axial distance	2,0 x h _{ef}	$S_{cr_{1}^{N}}$	[mm]	160	180	220	250	340	420
Min. axial distance	5,0 x d	S_{min}	[mm]	40	50	60	80	100	120
Embedment depth		h_{ef}	[mm]	80	90	110	125	170	210
Min. part thickness		h _{min}	[mm]	h _e	+ 30 mr	n	ŀ	n _{ef} + 2d ₀	
Anchor diameter		d	[mm]	8	10	12	16	20	24
Drill diameter		d _o	[mm]	10	12	14	18	24	28
Max. installation torque		T _{inst.}	[Nm]	10	20	40	60	120	150

CHEMICAL ANCHOR ECM

Performance data – concrete

All data is based on Technical Assessment ETA 18/0639 (published 2018-09-24) and applies for:

- Correct installation according to ETA
- No edge distance and spacing influence. It's advised to use our calculation software ESSVE
 CS for more complicated design situations
- One typical embedment depth, as specified in the table. Including the minimum base material thickness dependant on this embedment depth
- Concrete C 20/25, f_{ck,cube} = 25 N/mm²
- Temperature range I (min. base material temp. -40°C, max. long/short term base material temp.: +24°C/40°C)
- Steel failure mode is denoted with <u>underline italics</u>
- Undersized hot dip galvanized threaded rods (e.g. 5.8U and 8.8U) have a reduced stress area in accordance with ISO 10684 Annex A. This lowers the steel capacity for M8 and M10, larger sizes are not affected
- The Design Resistance includes the partial safety factor for material γ_M and optimal installation safety factor (γ_{inst}), (e.g. dry/wet concrete rather than water-filled hole)
- The Recommended Loads use an overall partial safety factor for action γ = 1.4, which is an approximation of Eurocode EN 1990

Performance data – concrete

ESSVE ECM - Typical embedment depth

		M8	M10	M12	M16	M20	M24
Effective embedment depth, hef	[mm]	80	90	110	125	170	210
Minimum concrete thickness, h _{min}	[mm]	110	120	140	161	218	266

ESSVE ECM - Characteristic resistance, uncracked concrete, typical embedment depth

, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
			M8	M10	M12	M16	M20	M24			
		5.8	17.1	22.6	33.2	50.3	85.5	126.7			
		8.8	17.1	22.6	33.2	50.3	85.5	126.7			
Tension N_{Rk}	[kN]	A4-70	17.1	22.6	33.2	50.3	85.5	126.7			
		HDG 5.8U	17.1	22.6	Same as for 5.8						
		HDG 8.8U	17.1	22.6	Same as for 8.8						

			M8	M10	M12	M16	M20	M24	
		5.8	<u>9.0</u>	<u>15.0</u>	<u>21.0</u>	<u>39.0</u>	<u>61.0</u>	<u>88.0</u>	
		8.8	<u>15.0</u>	<u>23.0</u>	<u>34.0</u>	<u>63.0</u>	<u>98.0</u>	<u>141.0</u>	
Shear V _{Rk}	[kN]	A4-70	<u>13.0</u>	<u>20.0</u>	<u>30.0</u>	<u>55.0</u>	<u>86.0</u>	<u>124.0</u>	
		HDG 5.8U	<u>8.0</u>	<u>13.0</u>		Same as for 5.8			
		HDG 8.8U	<u>14.0</u>	<u>22.0</u>	Same as for 8.8				

ESSVE ECM - Design resistance, uncracked concrete, typical embedment depth

	•	,	,	<i>-</i> .		•		
			M8	M10	M12	M16	M20	M24
		5.8	9.5	12.6	18.4	27.9	47.5	70.4
		8.8	9.5	12.6	18.4	27.9	47.5	70.4
Tension N _{Rd}	[kN]	A4-70	9.5	12.6	18.4	27.9	47.5	70.4
		HDG 5.8U	9.5	12.6	Same as for 5.8			
		HDG 8.8U	9.5	12.6	Same as for 8.8			

			M8	M10	M12	M16	M20	M24	
		5.8	<u>7.2</u>	<u>12.0</u>	<u>16.8</u>	<u>31.2</u>	<u>48.8</u>	<u>70.4</u>	
		8.8	<u>12.0</u>	<u>18.4</u>	<u>27.2</u>	<u>50.4</u>	<u>78.4</u>	<u>112.8</u>	
Shear V _{Rd}	[kN]	A4-70	<u>8.3</u>	<u>12.8</u>	<u>19.2</u>	<u>35.3</u>	<u>55.1</u>	<u>79.5</u>	
		HDG 5.8U	<u>6.4</u>	<u>10.4</u>		Same as for 5.8			
		HDG 8.8U	<u>11.2</u>	<u>17.6</u>		Same as for 8.8			

Performance data – concrete

ESSVE ECM - Typical embedment depth

	•						
		M8	M10	M12	M16	M20	M24
Effective embedment depth, hef	[mm]	80	90	110	125	170	210
Minimum concrete thickness, h _{min}	[mm]	110	120	140	161	218	266

ESSVE ECM - Recommended loads, uncracked concrete, typical embedment depth

			М8	M10	M12	M16	M20	M24	
		5.8	690	915	1340	2030	3455	5125	
	8.8	690	915	1340	2030	3455	5125		
Tension N _{rec}	[kg]	A4-70	690	915	1340	2030	3455	5125	
		HDG 5.8U	690	915		Same as for 5.8			
		HDG 8.8U	690	915		Same as for 8.8			

			M8	M10	M12	M16	M20	M24	
		5.8	<u>520</u>	<u>870</u>	<u>1220</u>	<u>2270</u>	<u>3550</u>	<u>5125</u>	
		8.8	<u>870</u>	<u>1340</u>	<u>1980</u>	<u>3670</u>	<u>5710</u>	<u>8215</u>	
Shear V _{rec}	[kg]	A4-70	<u>605</u>	<u>930</u>	<u>1400</u>	<u>2565</u>	<u>4015</u>	<u>5785</u>	
		HDG 5.8U	<u>465</u>	<u>755</u>		Same as for 5.8			
		HDG 8.8U	<u>815</u>	<u>1280</u>	Same as for 8.8				

Setting data – masonry

ESSVE ECM can also be used for anchorages in masonry, both hollow and solid bricks. For application in hollow bricks perforated sleeves need to be used.

Solid bricks			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
nominal drill hole diameter	d _o	[mm]	10	12	14	18	10	12	16
embedment depth	h _{ef}	[mm]	80	90	100	100	90	100	100
bore hole depth	h _o	[mm]	80	90	100	100	90	100	100
diameter of clearance hole in fixture	d _f	[mm]	9	12	14	18	7	9	12
diameter of steel brush	d _b ≥	[mm]	12	14	16	20	12	14	18

Hollow and solid bricks		M8	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
perforated sleeve			12x80	16x85 16x130 16x200	16x85 16x130 16x200	20x85 20x130 20x200	20x85 20x130 20x200	16x85 16x130 16x200	20x85 20x130 20x200	
nominal drill hole diameter	d_{o}	[mm]	12	16	16	20	20	16	20	20
embedment depth	h _{ef}	[mm]	80	85 130 200	85 130 200	85 130 200	85 130 200	85 130 200	85 130 200	85 130 200
bore hole depth	h _o	[mm]	85	90 135 205	90 135 205	90 135 205	90 135 205	90 135 205	90 135 205	90 135 205
diameter of clearance hole in fixture	d _f	[mm]	9	9	12	14	18	7	9	12
diameter of steel brush	d _b ≥	[mm]	14	18	18	22	22	18	22	22

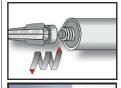
Performance data – masonry

The technical data sheet contains a selection of the most common masonry bricks, more bricks can be found in the masonry ETA.

It is also possible to use the chemical anchor for stones not found in the ETA, but then construction site tests are necessary to obtain a load capacity, the results can be compared with similar bricks from the ETA, contact our technical support for assistance.

Common bricks from the masonry ETA:

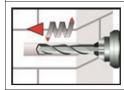
type	figure	dimensions lxbxh[mm]	compressive strength [N/mm²]	density [kg/dm³]	producer
solid calcium silica brick KS-NF		≥ 240 x 115 x 71	≥ 10	≥ 2,0	e.g. Wemding (D)
solid light weight con- crete brick LAC		≥ 300 x 123 x 248	≥ 2	≥ 0,6	e.g. Bisotherm (D)
Hollow con- crete brick Leca Lex Hark- ko RUH-200		≥ 498 x 200 x 195	≥ 2,7	≥ 0,7	e.g. Saint Gobain Weber (FIN)
Solid concrete brick Leca Lex Har- kko RUH-200 Kulma		≥ 498 x 200 x 195	≥ 3	≥ 0,78	e.g. Saint Gobain Weber (FIN)


solid clay brick Mz-1DF		≥ 240 x 115 x 55	≥ 10	≥ 1,6	e.g. Unipor (D)
autoclaved ae- rated concrete AAC	J	≥ 499 x 240 x 249	≥ 2	≥ 0,6	e.g. Porrit (D)

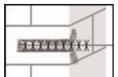
CHEMICAL ANCHOR ECM

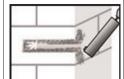
Installation instructions – solid masonry

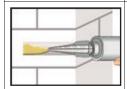
Preparation of cartridge

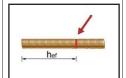


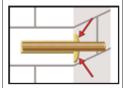
1. Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.


2. Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.

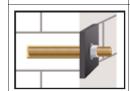

Installation in solid masonry (without sleeve)


Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drilling method according to Annex C4-C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by theselected anchor. In case of aborted drill hole the drill hole shall be filled with mortar.




4. Blow out from the bottom of the bore hole two times. Attach the brush to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.

5. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to min two-thirds with adhesive. Slowly withdraw the static mixing nozzle will avoid creating air pockets. Observe the gel-/ working times given in Table B4.

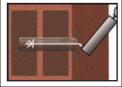


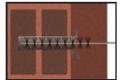
6. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

- 7. Be sure that the anular gap is fully filled with mortar. If no excess mortar is visible at the top of the hole, the application has to be renewed.
- **8.** Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).

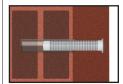
9. After full curing, the fixture can be installed with up to the max. installation torque (see parameters of brick Annex C4 to Annex C45) by using a calibrated torque wrench.

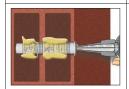
CHEMICAL ANCHOR ECM

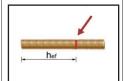



Installation instructions – hollow masonry

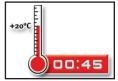
Installation in solid and hollow masonry (with sleeve)


3. Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 - C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.

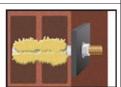



4. Blow out from the bottom of the bore hole two times. Attach the brush to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.

5. Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use sleeves that have the right length. Never cut the sleeve.



6. Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions. Observe the gel-/ working times given in Table B4.

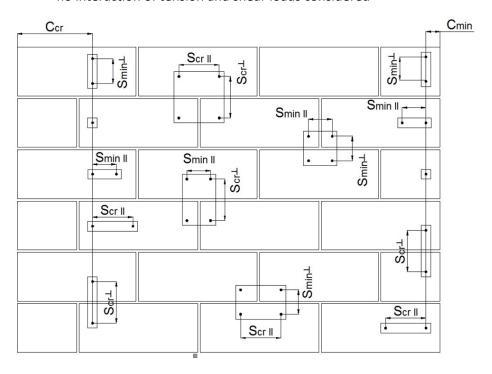


7. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

8. Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B4).

9. After full curing, the fixture can be installed with up to the max. installation torque (See parameters of brick Annex C4 to Annex C45) by using a calibrated torque wrench.

CHEMICAL ANCHOR ECM



Calculation of recommended loads

The recommended loads are only valid under the following conditions. For a more detailed design see ETA:

- dry environment
- spacing s ≥ s_{cr}
- edge distance c ≥ c_{cr}
- masonry mortar of strength class M2,5 to M9
- no prestressing force on the wall
- visible joints
- vertical joints are filled with mortar
- steel strength of anchor rod 5.8 or higher
- the partial safety factors for material and load are already considered
- no interaction of tension and shear loads considered

	dimensi 240 x 11		st	n press : rengtl 0 N/mr	า		nsity kg/dm		produ o Wemd		
usage without perforated sleeve			M8	M10	M1	2 M	116	G-M6	IG-M8	IG-M10 3)	
perforated sleeve			-	-	-		-	-	-	-	
anchorage depth	h _{ef}	mm	80	90	10	0 1	00	90	100	100	
minimum wall thickness	h _{min}	mm	115	240	24) 2	40	240	240	240	
installation torque	T _{inst}	Nm					2				
drilling method						hamme	er drillin	g			
critical edge distance	C _{cr}	mm	120	135	15	0 1	50	135	150	150	
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240	270	30	3	00	270	300	300	
critical axial distance perpendicular to horizontal joi	nt S _{cr,T}	mm	240	270	30	3	00	270	300	300	
minimal edge distance 2)	C _{min}	mm	C _{cr}								
minimal axial distance 2)	S _{min}	mm	S _{cr}								
recommended tension load 1)	N _{zul}	kN	0,86								
recommended vertical shear load 1)	V _{vert.}	kN	0,86								
recommended horizontal shear load 1)	V _{hori.}	kN				0,	,86				
usage with perforated sleeve			M8	M8	M10	M12	M16	IG-M6	iG-M8	IG-M10	
perforated sleeve			12	16	16	20	20	16	20	20	
anchorage depth	h _{ef}	mm	80			8	5; 130;	200			
minimum wall thickness	h _{min}	mm	115			ł	n _{ef} + 30r	nm			
installation torque	T _{inst}	Nm					2				
drilling method						hamme	er drillin	g			
critical edge distance	C _{cr}	mm	120				127,5	i			
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240				255				
critical axial distance perpendicular to horizontal joi		mm	240				255				
minimal edge distance ²⁾	C _{min}	mm					C _{cr}				
minimal axial distance 2)	S _{min}	mm				9	Scr				
recommended tension load 1)	N _{zul}	kN				0,	,71				
recommended vertical shear load 1)	V _{vert.}	kN	0,71				0,86				
recommended horizontal shear load 1)	V _{hori.}	kN	0,71				0,86				

¹⁾ Conditions and assumptions for the recommended loads, see page 13

²⁾ Reduction factors, see ETA

³⁾ Not covered by the ETA

						•		-			
	imensi 40 x 11		st	n press i rength 0 N/mn	ı		nsity kg/dm	ı³ e	produ e.g. Unip		
usage without perforated sleeve			M8	M10	M1	.2 M	116	IG M6 ³⁾	IG M8 ³⁾	IG M10 ³⁾	
perforated sleeve			-	-	-		-	-	-	-	
anchorage depth	h _{ef}	mm	80	90	10	0 10	00	90	100	100	
minimum wall thickness	h _{min}	mm	115	240	24	0 24	40	240	240	240	
installation torque	T _{inst}	Nm					2				
drilling method					ŀ	namme	r drilli	ing			
critical edge distance	C _{cr}	mm	120	135	15	0 1	50	135	150	150	
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240	270	30	0 30	00	270	300	300	
critical axial distance perpendicular to horizontal join	S _{cr,T}	mm	240	270	30	0 30	00	270	300	300	
minimal edge distance ²⁾	C _{min}	mm	C _{cr}								
minimal axial distance 2)	S _{min}	mm				5	S _{cr}				
recommended tension load 1)	N _{zul}	kN				0,	,43				
recommended vertical shear load 1)	V _{vert.}	kN	0,86	1,0	1,43 1,43 0		0,86	1,0	1,43		
recommended horizontal shear load 1)	V _{hori.}	kN	0,86	1,0	1,4	3 1,	43	0,86	1,0	1,43	
usage with perforated sleeve			M8	M8	M10	M12	M16	IG M	16 IG M8	3 IG M10	
perforated sleeve			12	16	16	20	20	16	20	20	
anchorage depth	h _{ef}	mm	80			85	; 130;	200			
minimum wall thickness	h _{min}	mm	115			h	+ 30ı	mm			
installation torque	T	Nm					2				
drilling method					h	amme	r drilli	ing			
critical edge distance	C _{cr}	mm	120				127,5	5			
critical axial distance parallel to horizontal joint	S _{cr,II}	mm	240				255				
critical axial distance perpendicular to horizontal join	S _{cr,T}	mm	240				255				
minimal edge distance ²⁾	C _{min}	mm				(Ccr				
minimal axial distance 2)	S _{min}	mm				S	cr				
recommended tension load 1)	N _{zul}	kN				0,	.57				
recommended vertical shear load 1)	V _{vert.}	kN	0,86	0,86	1,0	1,0	1,0	0,80	6 1,0	1,0	
recommended horizontal shear load 1)	V _{hori.}	kN	0,86	0,86	1,0	1,0	1,0	0,80	6 1,0	1,0	
1) Conditions and assumptions for the recommended to	-de eee :	2222 12					•	•		•	

¹⁾ Conditions and assumptions for the recommended loads, see page 13

²⁾ Reduction factors, see ETA

solid light weight concrete brick			mensio 300 x 12 248		st	npressi crength 2 N/mm	1	dens ≥ 0,6 kg	-	prod e.g. Biso	therm
usage without perforated	d sleeve				M8	M10	M12	M16	IG M6 ³	IG M8 3)	IG M10 ³⁾
perforated sleeve					-	-	-	-	-	-	-
anchorage depth			h_{ef}	mm	80	90	100	100	90	100	100
minimum wall thickness				mm		,		300)		
installation torque			h _{min}	Nm				2			
drilling method							h	ammer	drilling		
critical edge distance			C _{cr}	mm	120	135	150	150	135	150	150
critical axial distance par	allel to horizontal joint		S _{cr,II}	mm	240	270	300	300	270	300	300
critical axial distance per	pendicular to horizontal j	joint	S _{cr,T}	mm	240	270	300	300	270	300	300
minimal edge distance 2)			C _{min}	mm				C _{cr}			
minimal axial distance 2)			S _{min}	mm				S _{cr}			
recommended tension loa	ad 1)		N_{zul}	kN	0,57						
recommended vertical sh	ear load ¹⁾		$V_{\text{vert.}}$	kN	0,86	1,00	1,14	1,14	1,00	1,14	1,14
recommended horizontal	shear load 1)		$V_{hori.}$	kN	0,60	0,78	0,98	1,07	0,78	0,98	1,07
solid light weight con- crete brick Leca Lex Harkko RUH-200 kulma	A Comment of the Comm		98 x 20		st	n pressi c rength 3 N/mm	1	dens ≥0,78 dm	kg/	producer e.g. Saint Gobain Weber (FIN)	
usage without perforated	d sleeve				M8	M10	M12	M16	IG M6 33	IG M8 3)	IG M10 3)
perforated sleeve					-	-	-	-	-	-	-
anchorage depth			$h_{_{ef}}$	mm	80	90	100	100	90	100	100
minimum wall thickness			$\mathbf{h}_{_{min}}$	mm				300)		
installation torque			T_{inst}	Nm				2			
drilling method							h	ammer	drilling		
critical edge distance			C _{cr}	mm	120	135	150	150	135	150	150
critical axial distance par	allel to horizontal joint		S _{cr,II}	mm	240	270	300	300	270	300	300
critical axial distance per	oendicular to horizontal j	joint	S _{cr,T}	mm	240	270	300	300	270	300	300
minimal edge distance 2)			C _{min}	mm				C _{cr}			
minimal axial distance 2)			S _{min}	mm				S _{cr}			
recommended tension loa	ad 1)		$N_{_{zul}}$	kN	0,57				0,86		
recommended vertical sh											-
recommended vertical sin	ear load 1)		V _{vert.}	kN	0,86				1,14		

 $^{^{\}mbox{\tiny 1)}}\mbox{Conditions}$ and assumptions for the recommended loads, see page 13

²⁾ Reduction factors, see ETA

hollow concrete brick Leca Lex Harkko RUH-200		≥ 4	mensi 198 x 20 195 mn	00 x	compressive strength ≥ 2,7 N/mm ²			density ≥ 0,7 kg/dm³		producer e.g. Saint Gobain Weber (FIN)		
					M8	M8	M10	M12	M16	IG M	5 ³⁾ IG M8	3) IG M10 ³⁾
perforated sleeve					12	16	16	20	20	16	20	20
anchorage depth			h _{ef}	mm	80 85; 130							
minimum wall thickness				mm	200							
installation torque				Nm					2			
drilling method								rota	tion	drilling		
critical edge distance		C _{cr}	mm	100	100	100	120	120	100	120	120	
critical axial distance par	allel to horizontal joint		S _{cr,II}	mm					498	3		
critical axial distance per	pendicular to horizontal	joint	S _{cr,T}	mm					195	5		
minimal edge distance 2)			C _{min}	mm					C _{cr}			
minimal axial distance 2)			S _{min}	mm					S _{cr}			
recommended tension loa	ad ¹⁾		N_{zul}	kN		0,57		0,71	0,71	0,57	0,71	0,71
recommended vertical sh	ear load ¹⁾		V _{vert.}	kN	0,71					1,00		
recommended horizontal	shear load 1)		V _{hori.}	kN					0,2	6		
autocalved aerated					compressive strength ≥ 2 N/mm²							
concrete	Ī	≥ 4	mensi 199 x 24 240 mr	49 x		streng	gth		dens),2 kg	sity g/dm³	•	ducer orit (D)
concrete	J	≥ 4	199 x 24	49 x		streng	g th nm²	≥ (),2 kg	-	e.g. P	
concrete	I	≥ 4	199 x 24	49 x	<u>\$</u> ≥	streng 2 N/n	g th nm²	≥ (),2 kg	g/dm³	e.g. P	orit (D)
AAC	I	≥ 4	199 x 24 240 mr	49 x	<u>\$</u> ≥	streng 2 N/n	g th nm²	≥ (2 M1	.6 IC	g/dm³	e.g. P	orit (D)
AAC perforated sleeve	I	≥ 4	199 x 24 240 mr h _{ef} h _{min}	19 x m	± ≥ M8	2 N/n	gth nm²) M12	≥ (2 M1	.6 IC	g/dm ³ 6 M6 ³⁾ - 90	e.g. P	orit (D) IG M10 ³⁾ -
concrete AAC perforated sleeve anchorage depth		≥ 4	199 x 24 240 mr h _{ef} h _{min}	19 x m	± ≥ M8	2 N/n	gth nm²) M12	≥ (2 M1	.6 IC	g/dm ³ 6 M6 ³⁾ - 90	e.g. P	orit (D) IG M10 ³⁾ -
concrete AAC perforated sleeve anchorage depth minimum wall thickness		≥ 4	99 x 2 ⁴ 240 mr h _{ef} h _{min} T _{inst}	49 x m mm mm	± ≥ M8	2 N/n	gth nm²) M12	≥ (22 M1 - 0) 10	0 240 2	g/dm ³ 6 M6 ³⁾ - 90	e.g. P IG M8 ³⁾ - 100	orit (D) IG M10 ³⁾ -
concrete AAC perforated sleeve anchorage depth minimum wall thickness installation torque		≥ 4	199 x 24 240 mr h _{ef} h _{min}	49 x m mm mm	± ≥ M8	2 N/n	gth nm²) M12 - 100	≥ (2 M1 - 0 10	0 240 2 mer	g/dm³ 6 M6 ³⁾ - 90	e.g. P IG M8 ³⁾ - 100	orit (D) IG M10 ³⁾ -
concrete AAC perforated sleeve anchorage depth minimum wall thickness installation torque drilling method	rallel to horizontal joint	≥ 4	199 x 242 240 mr hef hmin Tinst Ccr Scr.,II	mm mm Nm	M8 - 80	M10	gth nm²) M12 - 100	≥ (2 M1 - 0 10 ham	0 240 2 mer	g/dm³ 6 M6 ³) - 90 0	e.g. P IG M8 ³⁾ - 100	orit (D) IG M10 ³⁾ - 100
concrete AAC perforated sleeve anchorage depth minimum wall thickness installation torque drilling method critical edge distance	<u>-</u>	≥ 4	199 x 24 240 mr	mm mm Nm	M8 - 80 120	2 N/r M10 - 90	9th nm² 0 M11 - 100 150 300	≥ (2 M12 - 0 10 ham 0 15 0 30	0 240 2 mer	g/dm ³ 6 M6 ³⁾ - 90 0 drilling	e.g. P IG M8 ³⁾ - 100	orit (D) IG M10 ³⁾ - 100
concrete AAC perforated sleeve anchorage depth minimum wall thickness installation torque drilling method critical edge distance critical axial distance par	pendicular to horizontal	≥ 4	h _{ef} h _{min} T _{inst} C _{cr} S _{cr,T} C _{min} C	mm mm Nm mm mm	M8 - 80 120 240	2 N/n M10 - 90 135 270	9th nm² 0 M11 - 100 150 300	≥ (2 M12 - 0 10 ham 0 15 0 30	0 240 2 mer	g/dm ³ 6 M6 ³⁾ - 90 0 drilling 135 270 270	e.g. P IG M8 ³⁾ - 100 3 150 300	IG M10 ³⁾ - 100 150 300
concrete AAC perforated sleeve anchorage depth minimum wall thickness installation torque drilling method critical edge distance critical axial distance par	pendicular to horizontal	≥ 4	h ef h min T inst C cr S cr, I C min S min S min S min S c c c c c c c c c c c c c c c c c c	mm mm Nm mm mm mm mm	M8 - 80 120 240	2 N/n M10 - 90 135 270	9th nm² 0 M11 - 100 150 300	≥ (2 M12 - 0 10 ham 0 15 0 30	0 244 2 mer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g/dm ³ 6 M6 ³⁾ - 90 0 drilling 135 270 270	e.g. P IG M8 ³⁾ - 100 3 150 300	IG M10 ³⁾ - 100 150 300
concrete AAC perforated sleeve anchorage depth minimum wall thickness installation torque drilling method critical edge distance critical axial distance par critical axial distance per minimal edge distance	oendicular to horizontal	≥ 4	h ef h min T inst C cr S cr, T C min S min N zul	mm mm mm mm mm mm mm	M8 - 80 120 240	M10 - 90 - 135 - 270	150 300	≥ (2 M12 - 0 10 ham 15 0 30 0 30	0 244 2 mer 0 0 0 75 100 100 100 100 100 100 100 100 100 10	g/dm ³ 6 M6 ³⁾ - 90 0 drilling 135 270 270	e.g. P IG M8 ³⁾ - 100 3 150 300	IG M10 ³⁾ - 100 150 300
concrete AAC perforated sleeve anchorage depth minimum wall thickness installation torque drilling method critical edge distance critical axial distance par critical axial distance per minimal edge distance ²⁾ minimal axial distance ²⁾	pendicular to horizontal	≥ 4	h ef h min T inst C cr S cr, I C min S min S min S min S c c c c c c c c c c c c c c c c c c	mm mm mm mm mm mm kN kN kN	M8 - 80 - 120 240 240	M10 - 90 - 135 - 270	150 300 3 1,79	≥ (2 M1 - 0 10 ham 0 15 0 30 0 30	244 2 2 mmer 0 0 75 100	g/dm ³ 6 M6 ³⁾ - 90 0 drilling 135 270 270	e.g. P IG M8 ³⁾ - 100 3 150 300 300	orit (D) IG M10 ³⁾ - 100 150 300 300

¹⁾ Conditions and assumptions for the recommended loads, see page 13

²⁾ Reduction factors, see ETA