Environmental Product Declaration

In accordance with ISO 14025 and EN 15804:2012+A2:2019 for:

Atlantic washbasin mixers

from

Villeroy & Boch Gustavsberg AB

Programme: The International EPD® System, <u>www.environdec.com</u>

Programme operator: EPD International AB

EPD registration number: S-P-07034
Publication date: 2022-09-23
Valid until: 2027-09-23

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com

General information

Programme information

Programme:	The International EPD® System					
	EPD International AB					
A dalage on a	Box 210 60					
Address:	SE-100 31 Stockholm					
	Sweden					
Website:	www.environdec.com					
E-mail:	info@environdec.com					

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but registered in different EPD programmes, or not compliant with EN 15804, may not be comparable. For two EPDs to be comparable, they must be based on the same PCR (including the same version number) or be based on fully-aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have equivalent system boundaries and descriptions of data; apply equivalent data quality requirements, methods of data collection, and allocation methods; apply identical cut-off rules and impact assessment methods (including the same version of characterisation factors); have equivalent content declarations; and be valid at the time of comparison. For further information about comparability, see EN 15804 and ISO 14025.

Company information

Owner & Contact of the EPD:
Villeroy & Boch Gustavsberg AB
Odelbergs väg 11
134 40 Gustavsberg
Tel: +46 8-570 391 00
www.gustavsberg.se

<u>Description of the organisation:</u>

Villeroy & Boch Gustavsberg's head office is situated on Värmdö, just outside Stockholm, Sweden, and we have production facilities in Gustavsberg and Vårgårda as well. In addition to our production facilities in Sweden, we also have sales offices around the Nordic countries and in the Baltics. The company is a wholly owned subsidiary of the German Villeroy & Boch AG Group and thus belongs to one of the largest manufacturers of bathroom furnishing solutions in Europe.

Product-related or management system-related certifications:

SS-EN ISO 9001:2015 - Quality Management System

SS-EN ISO 14001:2015 – Environmental Management System

SS-EN ISO 45001:2018 - Occupational Health and Safety Management Systems

SS-EN ISO 50001 :2018 - Energy Management System

EMAS, Eco Management and Audit Scheme - register, Site Vårgårda

Name and location of production site:

Villeroy & Boch Gustavsberg AB, Vårgårda, Sweden

Product information

Product name:

Atlantic washbasin mixer

The results and content information in this EPD is calculated based on Atlantic washbasin mixer (GB41215047) which is considered a representative product since it is the product with largest production volumes within the product group. The article numbers below are identical or very similar and are also included in the EPD. There is no difference in GWP-GHG results for these products.

Product name	Article number	RSK	EAN-number	Article weight (kg/piece)	Energy class
Atlantic washbasin mixer	GB41215047	8277892	7393792232340	1.21	С
Atlantic washbasin mixer, with G3/8 connection	GB41215047R		7393792234870	1.21	С
Atlantic washbasin mixer, multipack 60 pcs	GB41215047 60	8278146	7393792233583	1.21	С

Product description:

Atlantic washbasin mixers in this EPD are Energy C classified product that helps saving energy and water during the usage phase. The range of Atlantic washbasin mixers also consist of mixers with a more efficient products, rated Energy Class A. These products are presented in EPD S-P 05059

UN CPC code:

42911 - Sinks, wash-basins, baths and other sanitary ware and parts thereof, of iron, steel, copper or aluminum.

LCA information

Declared unit:

1 kg of brass mixer

Reference service life:

No RSL is declared. This EPD is based on a cradle-to-gate assessment

Time representativeness:

The LCA is based on production data from 2020 and is considered to be an average year of production.

Cut-off criteria:

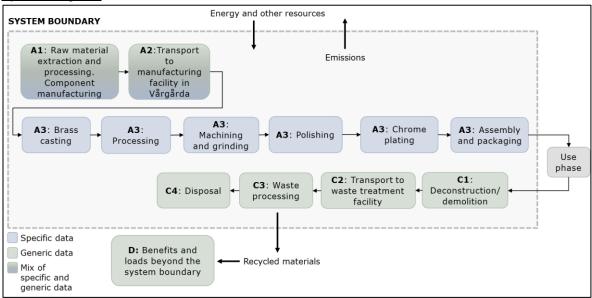
More than 95% of total inflows of mass and energy are included in the study.

Database(s) and LCA software used:

Ecoinvent 3.8 and SimaPro 9.3

Description of system boundaries:

Cradle to gate with modules C1-C4 and module D(A1-A3+C+D).


Data quality:

Raw material input, energy, water and chemical consumption from manufacturing and waste in manufacturing is primary data collected from Villeroy & Boch. A mix of specific and general data is used for extraction and refining of raw materials and components, and for transportation.

LCA practitioner:

AFRY Sweden, www.afry.com

System diagram:

	Pro	oduct sta	age	Constru				U	se sta	ge			End of life stage					Resource recovery stage
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal		Reuse-Recovery- Recycling-potential
Module	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	ſ	D
Modules declared	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	Х	Х	Х	Х		Х
Geography	GLO/ EU	GLO/ EU	EU										EU	EU	EU	EU		EU
Specific data used	GHG	f the tota impact s pecific da and A3)	stems ata (A2			-	-	-	-	-	-	-	-	-	-	-		-
Variation – products		n GWP-0 sults (A1-																

A1: Raw Material

This stage includes raw material extraction, including melting and forming of brass. 70% of brass is produced from recycled metals. Also, production of raw materials for components as well as component manufacturing is included.

Transportation of inputs to brass production and component manufacturing is included in this module.

A2: Transport

This stage includes transportation of raw materials to production sites and of components to final site of assembly.

A3: Manufacturing

This stage includes production of the brass housings for the faucets, surface treatment of the housings and assembly of the finished product. It also includes treatment of waste generated from the manufacturing processes up to the end-of-waste state. The manufacturing processes at Villeroy & Boch includes casting, machining, grinding, polishing and chrome plating. The electricity used in manufacturing is the residual electricity mix of the Swedish energy supplier Vattenfall and consists of 56% hydropower and 46% nuclear power. The climate impact of the electricity mix is 17g CO₂ eq./kWh.

C1: Deconstruction

This stage includes impacts related to removing the

mixers at product end-of-life. The environmental impacts generated during this phase are very low and therefore can be neglected.

C2: Waste Transport

Includes the transportation of the discarded product to a waste treatment facility. The transport distance was assumed to be 100 km.

C3: Waste Processing

This stage includes sorting and recycling processes. An Ecoinvent process for sorting of waste iron has been used as proxy for these processes. 95% of the brass in the product is assumed to be recycled.

C4: Waste disposal

This stage includes waste disposal processes such as landfilling or incineration. Brass mixers are generally recycled at the end of their life. However, some of the non-brass metals, plastics and rubbers in the product are assumed to be landfilled or incinerated.

D: Benefits and loads outside the system boundary

This stage includes benefits and burdens associated with recovery/recycling that affects previous or future life cycles. For this product it includes benefits from the recycling of brass and incineration of waste.

Content information

The main material in the washbasin mixer is brass. Zinc is used in the lever and other materials are used in different components.

Product components	Weight-%	Post-consumer material, weight-%	Renewable material, weight-%			
Brass	69%	70%	0			
Zinc	14%	0	0			
Polyamide	5%	0	0			
Stainless steel	7%	49%	0			
Soft PEX	2%	0	0			
Aluminium oxide	1%	0	0			
Polyoxymethylene (POM)	1%	0	0			
PBT	1%	0	0			
ABS	0.4%	0	0			
PPO	0.3%	0	0			
EPDM	0.3%	0	0			
TPE	0.2%	0	0			
Silicone	0.1%	0	0			
Lead	<0.8%	0	0			
TOTAL	1 kg mixer					
Packaging materials	Weight, kg	Weight-% (versus the prod	duct)			
Cardboard	0.1 kg	9%				
TOTAL	0.1 kg	9%				

Dangerous substances from the candidate list of SVHC for Authorisation	EC No.	CAS No.	Weight-% per functional or declared unit
Lead	231-100-4	7439-92-1	<0.8%

Environmental Information

Potential environmental impact – mandatory indicators according to EN 15804

. 0	torreiar or		•		uatory in			ing to Lit	10004	
					er 1 kg of br					
Indicator	Unit	A 1	A2	А3	Tot.A1-A3	C1	C2	C3	C4	D
GWP- fossil	kg CO₂ eq.	4.43E+00	8.97E-02	4.14E-01	4.93E+00	0.00E+00	1.63E-02	9.75E-04	2.14E-01	-2.17E+00
GWP- biogenic	kg CO₂ eq.	9.18E-02	1.03E-04	4.15E-02	1.33E-01	0.00E+00	4.37E-05	5.50E-05	3.28E-05	-2.49E-02
GWP- luluc	kg CO ₂ eq.	6.82E-03	5.23E-05	2.09E-02	2.78E-02	0.00E+00	6.51E-06	2.09E-06	3.09E-06	-4.55E-03
GWP- total	kg CO ₂ eq.	4.52E+00	8.98E-02	4.76E-01	5.09E+00	0.00E+00	1.63E-02	1.03E-03	2.14E-01	-2.20E+00
ODP	kg CFC 11 eq.	2.08E-07	1.97E-08	8.19E-08	3.09E-07	0.00E+00	3.77E-09	6.15E-11	1.01E-09	-1.35E-07
AP	mol H+ eq.	1.72E-01	1.81E-03	5.27E-03	1.79E-01	0.00E+00	4.63E-05	5.88E-06	6.18E-05	-1.51E-01
EP- freshwater	kg P eq.	1.25E-02	4.15E-06	1.56E-04	1.27E-02	0.00E+00	1.07E-06	8.96E-07	7.57E-07	-1.12E-02
EP- freshwater	kg PO4 eq.	3.85E-02	1.27E-05	4.78E-04	3.90E-02	0.00E+00	3.28E-06	2.75E-06	2.32E-06	-3.43E-02
EP- marine	kg N eq.	1.07E-02	4.43E-04	6.65E-04	1.18E-02	0.00E+00	9.40E-06	1.19E-06	3.20E-05	-7.36E-03
EP- terrestrial	mol N eq.	1.35E-01	4.92E-03	5.18E-03	1.46E-01	0.00E+00	1.02E-04	1.13E-05	2.84E-04	-1.01E-01
POCP	kg NMVOC eq.	3.78E-02	1.31E-03	1.81E-03	4.09E-02	0.00E+00	3.94E-05	3.16E-06	7.13E-05	-2.82E-02
ADP- minerals& metals*	kg Sb eq.	4.26E-03	1.61E-07	1.11E-05	4.27E-03	0.00E+00	5.77E-08	9.15E-09	1.82E-08	-3.81E-03
ADP- fossil*	MJ	5.55E+01	1.28E+00	3.48E+01	9.16E+01	0.00E+00	2.47E-01	1.98E-02	7.76E-02	-2.86E+01
WDP*	m^3	4.13E+00	3.09E-03	1.02E+00	5.15E+00	0.00E+00	7.28E-04	2.23E-04	1.17E-02	-2.59E+00

Acronyms

GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Potential environmental impact – additional mandatory and voluntary indicators

Results per 1 kg brass mixer										
Indicator	Unit	A1	A2	А3	Tot.A1-A3	C1	C2	C3	C4	D
GWP- GHG ¹	kg CO ₂ eq.	4.43E+00	8.97E-02	4.35E-01	4.96E+00	0.00E+00	1.63E-02	9.77E-04	2.14E-01	-2.17E+00

¹ The indicator includes all greenhouse gases included in GWP-total but excludes biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. This indicator is thus almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013.

^{*} Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator.

Use of resources per 1 kg of brass mixer

Indicator	Unit	A 1	A2	А3	Tot.A1-A3	C1	C2	C3	C4	D
PERE	MJ	9.75E+00	1.23E-02	1.10E+01	2.07E+01	0.00E+00	3.53E-03	3.73E-03	1.87E-03	-6.83E+00
PERM	MJ	0.00E+00	0.00E+00	1.58E+00	1.58E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	9.75E+00	1.23E-02	1.26E+01	2.23E+01	0.00E+00	3.53E-03	3.73E-03	1.87E-03	-6.83E+00
PENRE	MJ	5.92E+01	1.36E+00	3.52E+01	9.58E+01	0.00E+00	2.62E-01	2.08E-02	8.33E-02	-3.06E+01
PENRM	MJ.	4.09E+00	0.00E+00	2.26E+00	6.36E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	MJ	6.33E+01	1.36E+00	3.75E+01	1.02E+02	0.00E+00	2.62E-01	2.08E-02	8.33E-02	-3.06E+01
SM	kg	4.82E-01	0	0	4.82E-01	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0	0	0
FW	m³	1.38E-01	1.86E-04	2.33E-02	1.62E-01	0.00E+00	4.13E-05	5.78E-06	3.95E-04	-7.31E-02
	PERE = Use	of renewable	primary energy	v excluding rei	newable prima	ry energy reso	urces used as	raw materials	; PERM = Use	of

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy re-sources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh

Waste production and output flows

Waste production* per 1 kg of brass mixer

Indicator	Unit	A 1	A2	А3	Tot.A1-A3	C1	C2	C3	C4	D
Hazardous waste disposed	kg	0	0	1.15E-01	1.15E-01	0	0	0	0	0
Non- hazardous waste disposed	kg	0	0	2.03E-01	2.03E-01	0	0	0	3.47E-01	0
Radioactiv e waste disposed	kg	0	0	0	0	0	0	0	0	0

*These indicators are presented according to Environdec's guidelines on resource use and waste indicators (https://www.environdec.com/resources/indicators).

Output flows per 1 kg of brass mixer

Indicator	Unit	A 1	A2	А3	Tot.A1-A3	C1	C2	C3	C4	D
Componen ts for re- use	kg	0	0	0	0	0	0	0	0	0
Material for recycling	kg	0	0	4.36E-01	4.36E-01	0	0	0	6.54E-01	1.09E+00
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy, electricity	MJ	0	0	0	0	0	0	0	0	0
Exported energy, thermal	MJ	0	0	0	0	0	0	0	0	0

Information on biogenic carbon content

Results per 1 kg of brass mixer										
BIOGENIC CARBON CONTENT	Unit	QUANTITY								
Biogenic carbon content in product	kg C	0								
Biogenic carbon content in packaging	kg C	0.093								

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO_2 .

Additional information

Drinking water is by far our most important natural resource and fundamental for our health. Worldwide the limitations regarding materials and their influences on drinking water quality are increasingly getting stricter. Therefore, the proper choice of suitable alloys for drinking water installations is one of the most crucial aspects. Technical, economic, and – with growing interest – hygienical characteristics have to be considered.

More than 20 percent of Sweden's energy use comes from heating and production of hot water. In a two-year project, RISE has shown that large savings are possible by using energy-efficient mixers (Folkeson et al., 2017). Researchers at RISE have carried out measurements in apartment buildings with mixers in different energy classes from Villeroy & Boch Gustavsberg & others. Good energy-rated mixers have functions that reduce hot water use, such as cold start or resilient controls. The results show that it is possible to save about 28% of the hot water used.

These products are designed and constructed to enable reuse, by in future change components and thereby reach new and updated functionality and flowrates, this to enhance their lifetime and reduce use of material and resources.

References

EPD International (2021): General Programme Instructions for the International EPD® System. Version 4.0. www.environdec.com.

EPD International (2019): Product Category Rules (PCR) Construction products 2019:14, version 1.1

EN15804-A2:2019. Sustainability of construction works - Environmental Product Declarations — Core rules for the product category of construction products

Ecoinvent v.3. Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., and Weidema, B. (2016): The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, [online] 21(9), pp.1218–1230. Available at: http://link.springer.com/10.1007/s11367-016-1087-8 [Accessed 27-08-2021].

Folkeson, B., Fernqvist, N., Normann, A. (2017): Vattenanvändning med energieffektiva blandare. Report 2017:11, Swedish Energy Agency.

SimaPro. SimaPro LCA Package, Pré Consultants, the Netherlands, www.pre-sustainability.com

Fransson, K., Lagercrantz, K. (2022). *Environmental Product Declaration (EPD) of the Atlantic series mixers*. Gothenburg, AFRY Sustainability Consulting.