

Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél. : (33) 01 64 68 82 82 Fax : (33) 01 60 05 70 37

European Technical Assessment

ETA-10/0309 of 01/10/2015

English translation prepared by CSTB - Original version in French language

General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011:

Nom commercial Trade name

Famille de produit *Product family* Injection system SPIT EPCON C8 XTREM for cracked concrete

Cheville à scellement de type "à injection" pour fixation dans le béton fissuré et non fissuré : tiges filetées M8 à M30 et barres d'armatures Ø8 à Ø32.

Bonded injection type anchor for use in cracked and non-cracked concrete: Threaded rods M8 to M30 and rebars Ø8 to Ø32

Titulaire *Manufacturer*

Usine de fabrication Manufacturing plant Société SPIT Route de Lyon F-26501 BOURG-LES-VALENCE France

Société SPIT Route de Lyon F-26501 BOURG-LES-VALENCE France

intégrante de cette évaluation

Cette evaluation contient: This Assessment contains

Base de l'ETE Basis of ETA

Cette evaluation remplace: *This Assessment replaces* 25 pages including 21 pages of annexes which form an integral part of this assessment

25 pages incluant 21 pages d'annexes qui font partie

ETAG 001, Version April 2013, utilisée en tant que EAD ETAG 001, Edition April 2013 used as EAD

ATE-10/0309 valide du 11/10/2010 au 11/10/2015 ETA-10/0309 with validity from 11/10/2010 to 11/10/2015

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific part

1 Technical description of the product

The Injection system SPIT EPCON C8 XTREM is an adhesive anchor consisting of a two component system delivered in unmixed condition in cartridges and of a steel element.

The steel element can be made of zinc plated carbon steel, reinforcing bar, stainless steel, or high corrosion resistant stainless steel (HCR).

The steel element is placed into a rotary/percussion drilled hole filled with the injection mortar and is anchored via the bond between the metal part and concrete.

An illustration of the product is provided in Annexes A.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension loads in non-cracked concrete acc. TR029 or CEN/TS 1992-4, for threaded rods	See Annex C1
Characteristic resistance under tension loads in cracked concrete acc. TR029 or CEN/TS 1992-4, for threaded rods	See Annex C2
Characteristic resistance under shear loads in concrete acc. TR029 or CEN/TS 1992-4, for threaded rods	See Annex C 3
Displacements for threaded rods	See Annex C4
Characteristic resistance under tension loads in non-cracked concrete acc. TR029 or CEN/TS 1992-4, for rebars	See Annex C5
Characteristic resistance under tension loads in cracked concrete acc. TR029 or CEN/TS 1992-4, for rebars	See Annex C6
Characteristic resistance under shear loads in concrete acc. TR029 or CEN/TS 1992-4, for rebars	See Annex C7
Displacements for rebars	See Annex C8
Characteristic resistance under seismic action C1 acc. TR045, for threaded rods	See Annex C11

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not relevant.
- 3.6 Energy economy and heat retention (BWR 6) Not relevant.

3.7 Sustainable use of natural resources ((BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission ¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	Ι	1

5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

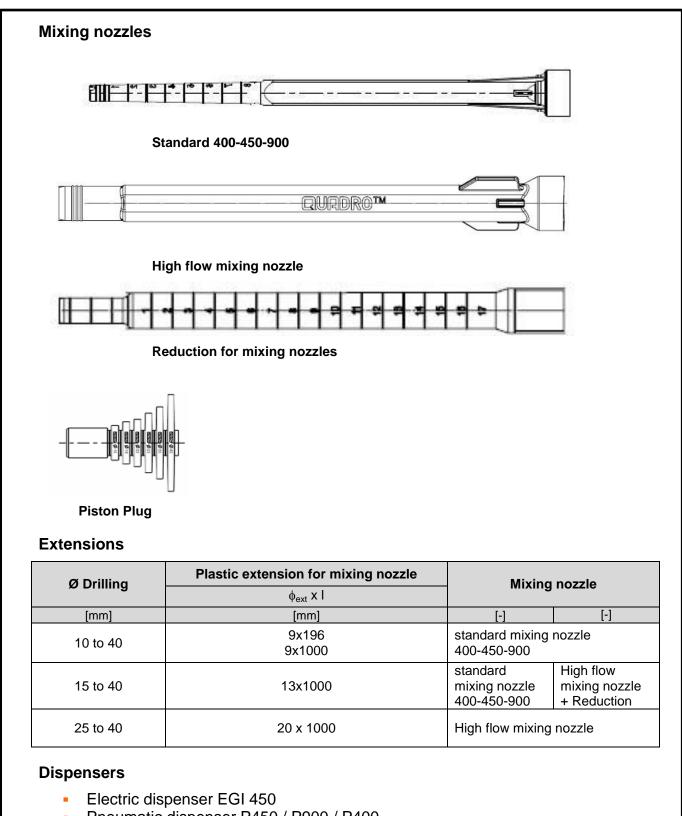
The original French version is signed by

Charles Baloche Technical Director

1

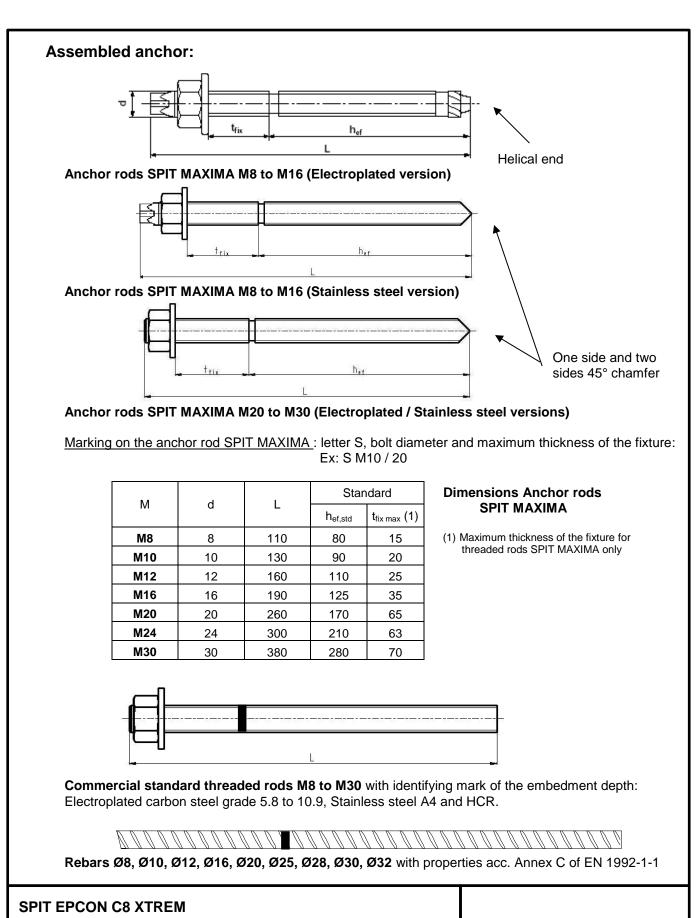
Injection mortar

Two component epoxy system



Marking

- Identifying mark of the producer **SPIT**
- Trade name EPCON C8 XTREM
- Expire date
- Curing and processing time
- Charge code number


Cartridges

400ml coaxial cartridge	
450ml side by side cartridge	
900ml side-by-side cartridge	
SPIT EPCON C8 XTREM	
Product description Mortar cartridges	Annex A1

- Pneumatic dispenser P450 / P900 / P400
- Manual dispenser M450 / M450 premium / M400

SPIT EPCON C8 XTREM	
Product description Mixing nozzles, extensions and dispensers	Annex A2

Product description

Steel elements

Annex A3

Table A1 : Material properties for threaded rods								
Designation	Size) reference						
	Electi	roplated Version						
	M8 to M30 (standard commercial rods)	, 8.8 and 10.9 according to ISO 898 NF E25-009 EN ISO 1461						
	MAXIMA M8 (produced by the manufacturer)	DIN 1654 part 2 or 4, c formed steel. Zinc coating 5µm min.	old formed steel or NFA 35053, cold NF E25-009					
Threaded rods	MAXIMA M10 to M16 (produced by the manufacturer)	NFA 35053 cold formed steel Zinc coating 5µm min. NF E25-009						
	MAXIMA M20 to M30 (produced by the manufacturer)	11SMnPb37 according Zinc coating 5µm min.						
Nut	-	Steel, EN 20898-2 Grade 6 or 8 Zinc coating 5µm min.	NF E25-009					
Washer	-	Steel DIN 513 Zinc coating 5µm min.	NF E25-009					
	Stainle	ess steel version						
Threaded rods (Maxima or std commercial rods)	Grade A4-80: M8 to M24 Grade A4-70: M30	X2CrNiMo 17.12.2 acc	ording to EN 10088-3					
Nut		Stainless steel A4-80 a	ccording to EN 20898-2					
Washer		Stainless steel A4 acco	ording to EN 20898-2					
	High resistance	e corrosion version (H	CR)					
Threaded rods	M8 to M30	Stainless steel HCR ac Rm ≥ 650 MPa acc. EN	c. EN 10088, 1.4529 / 1.4565 N 10088					
Nut	-	Stainless steel HCR ac Rm ≥ 650 MPa acc. EN	c. EN 10088, 1.4529 / 1.4565 I 10088					
Washer	-	Stainless steel HCR ac EN ISO 7089	c. EN 10088, 1.4529 / 1.4565					
SPIT EPCON C8 X	TREM							
Product description		Annex A4						

Table A2: Material properties for rebars

(Refer to EN 1992-1-1 Annex C Table C.1 and C.2N)

Product form		Bars and de-coiled rods				
Class		B C				
Characteristic yield stree	ngth f _{yk} or f _{0,2k} (MPa)	400 to 600				
Minimum value of k = (ft	/f _y) _k	≥ 1,08 ≥ 1,15 < 1,35				
Characteristic strain at r	naximum force, ε _{uk} (%)	≥ 5,0 ≥ 7,5				
Bendability		Bend / Rebend test				
Maximum deviation from nominal mass (individual bar or wire) (%)	Nominal bar size (mm) ≤ 8 > 8	± 6 ± 4				
Minimum relative rib area, f _{R,min} (mm ²)	Nominal bar size (mm) 8 to 12 > 12	0,040 0,056				

High of the rib hrib:

The high of the rib h_{rib} must satisfy the equation $0,05 \text{ d} \le h_{rib} \le 0,07 \text{ d}$ with d = nominal diameter of the rebar.

SPIT EPCON C8 XTREM

Product description

Rebars

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- Seismic loads (performance categories C1 for threaded rods of sizes M10, M12 and M16),

Base materials:

- Cracked concrete and non-cracked concrete.
- Reinforced or unreinforced normal weight concrete of strength classes C20/25 at least to C50/60 at most according to EN 206-1: 2000-12.

Temperature Range:

- Ta: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- Tb: 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- Structures subject to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel, high corrosion resistance steel).
- Structures subject to external atmospheric exposure including industrial and marine environment if no particular aggressive conditions exist (stainless steel, high corrosion resistance steel).
- Structures subject to any of the three above conditions, with particular aggressive conditions (high corrosion resistance steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors" or CEN/TS 1992-4-5" Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- For seismic applications the anchorages are designed in accordance with TR045 "Design of Metal Anchors For Use In Concrete Under Seismic Actions".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Dry or wet concrete (use category 1) and in flooded holes (use category 2).
- Installation in cracked concrete for all sizes of threaded rods and rebars.
- All the diameters may be used in all the direction (floor, wall, overhead).
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools (Annexes B2 to B5).
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill
- In case of aborted drill hole: the drill hole shall be filled with mortar.

SPIT EPCON C8 XTREM

Intended Use

Specifications

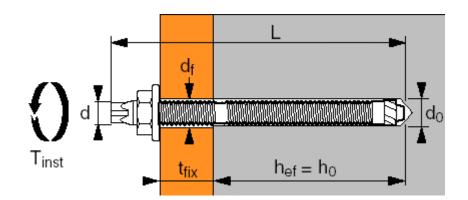
Annex B1

• For overhead installation, piston plugs shall be used, embedded metal parts shall be fixed during the curing time, e.g. with wedges.

Note:

Rebars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 only. The basic assumptions for the design according to anchor theory shall be observed. This includes the consideration of tension and shear loads and the corresponding failure modes as well as the assumption that the base material (concrete structural element) remains essentially in the serviceability limit state (either non-cracked or cracked) when the connection is loaded to failure. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the rebars act as dowels to take up shear forces.

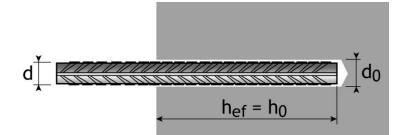
SPIT EPCON C8 XTREM

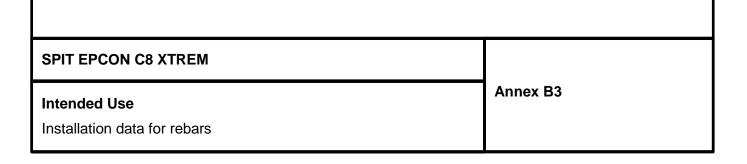

Intended Use

Specifications

Table B1a: Installation data with standard, minimum and maximum embedment	
depth for threaded rods	

Anchor size		-	M8	M10	M12	M16	M20	M24	M30
Diameter of anchor rod	d	[mm]	8	10	12	16	20	24	30
	min		40	40	48	64	80	96	120
Range of anchorage depth h_{ef} and bore hole depth h_{o}	max	[mm]	160	200	240	320	400	480	600
	std (1)	_	80	90	110	125	170	210	280
Nominal diameter of drill bit	d _o	[mm]	10	12	14	18	25	28	35
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22	26	33
Torque moment	T _{inst}	[Nm]	10	20	30	60	120	200	400
Minimum thickness of concrete member	h _{min}	[mm]	Max(h _{ef} + 30 ; 100)		h _{ef} + 2d _o				
Minimum spacing	S _{min}	[mm]	40	50	60	80	100	120	150
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	120	150


(1) Effective anchoring depth for SPIT MAXIMA threaded rods.



SPIT EPCON C8 XTREM Annex B2 Intended Use Installation data for threaded rods

Table B1b:	Installation data with standard, minimum and maximum embedment
	depth for rebars

Rebar size			Ø 8	Ø10	Ø12	Ø16	Ø 20	Ø 25	Ø 26	Ø 28	Ø 32
Diameter of rebar	d	[mm]	8	10	12	16	20	25	26	28	32
Range of anchorage depth h_{ef} and bore hole depth h_{o}	min	- [mm]	40	60	70	80	90	100	104	112	128
	max	- [mm]	160	200	240	320	400	500	520	560	640
Nominal diameter of drill bit	d _o	[mm]	10	12	15	20	25	30	30	35	40
Minimum thickness of concrete member	h _{min}	[mm]	Max(h _{ef} + 30 ; 100)				h _{ef} +	- 2d _o			
Minimum spacing	S_{min}	[mm]	40	50	60	80	100	125	130	140	160
Minimum edge distance	C _{min}	[mm]	40	50	60	80	100	125	130	140	160

		Threaded rods											
Dimensions		M8	M10	M12	M16	M20	M24	M30					
Ø drilled hole	[mm]	10	12	14	18	25	28	35					
Ø Air nozzle	[mm]	6	8	12	14	20	24	29					
Ø Brush	[mm]	11	13	15	20	26	30	37					

			Rebars											
Dimensions		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø26	Ø28	Ø32				
Ø drilled hole	[mm]	10	12	15	20	25	30	30	35	40				
Ø Air nozzle	[mm]	6	8	12	14	20	24	24	29	29				
Ø Brush	[mm]	11	13	16	22	26	32	32	37	42				

Air nozzle

Metal brush and extension

0 0

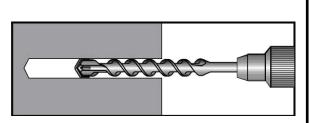
Table B3: Curing time

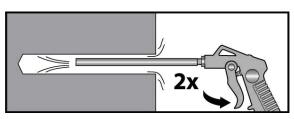
Temperature of	Gel time	Curing time						
base material	Gertime	in dry concrete	in wet concrete					
5°C to 9°C	20 min	30 h	60 h					
10°C to 19°C	14 min	23 h	46 h					
20°C to 24°C	11 min	16 h	32 h					
25°C to 29°C	8 min	12 h	24 h					
30°C to 39°C	5 min	8 h	16 h					
40°C	5 min	6 h	12 h					

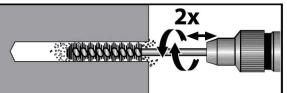
SPIT EPCON C8 XTREM

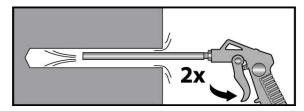
Intended Use

Cleaning tools, curing time

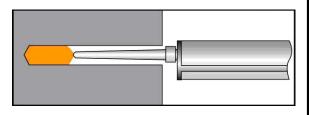

Installation instruction

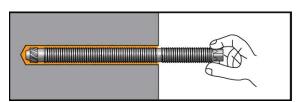

Bore hole drilling

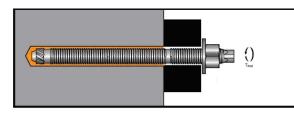

1 Drill hole of diameter (d₀) and depth (h₀) with a hammer drill set in rotation-hammer mode using an appropriately carbide drill bit.


Bore hole cleaning

- **2** Using compress air cleaning (mini 6 bars), use the appropriate extension and air nozzle, starting from the bottom of the hole blow out at least 2 times and until no dust is evacuated
- **3** Using the relevant SPIT brush and extension fitted on a drilling machine (brush dimensions in Tables B2), starting from the top of the hole in rotation, move downward to the bottom of the hole then move upward to the top of the hole. Repeat this operation.
- 4 Using compress air cleaning (mini 6 bars), use the appropriate extension and air nozzle, starting from the bottom of the hole blow out at least 2 times and until no dust is evacuated.




Injection


- 5 Screw the mixing nozzle onto the cartridge and dispense the first part to waste until an even colour is achieved for each new cartridge or mixing nozzle. Use tube extensions for holes deeper than 250 mm. Starting from the bottom of the hole, fill uniformly. In order to avoid air pocket, withdraw slowly the mixing nozzle while injecting the resin. Fill the hole until 1/2 full. For hole deeper than 350mm use piston plug.
- 6 Insert the rod or rebar, slowly and with a slight twisting motion in respect of the gel time indicated in Table B3. Remove excess resin from around the mouth of the hole before it sets. Control the embedment depth.

Setting the element

Do not disturb anchor before specified cure time (acc. to Table B3) Attach the fixture and tighten the nut at the specified torque (Table B1a)

SPIT EPCON C8 XTREM

Intended Use

Installation instructions

Annex B5

for threaded rods

Steel failure Characteristic resistance "Maxima" rods Partial safety factor Characteristic resistance "Grade 5.8" Partial safety factor	N_{Rk,s} [kN]							
Partial safety factor Characteristic resistance "Grade 5.8" Partial safety factor	NRKs [kN]							
Characteristic resistance "Grade 5.8" Partial safety factor		22	35	51	94	118	170	272
Partial safety factor	γ _{Ms,N} ¹⁾ [-]		1,	71	•		1,49	
	N _{Rk,s} [kN]	18	29	42	79	123	177	281
No. 1 11 11 11 11 10 10 10 10 10 10 10 10 1	γ _{Ms,N} ¹⁾ [-]		•	•	1,5		•	
Characteristic resistance "Grade 8.8"	Nrks [kN]	29	46	67	126	196	282	449
Partial safety factor	γ _{Ms,N} ¹⁾ [-]				1,5			
Characteristic resistance "Grade 10.9"	N_{Rk,s} [kN]	37	58	84	157	245	353	561
Partial safety factor	γ _{Ms,N} ¹⁾ [-]			T	1,4			
Characteristic resistance "Stainless steel A4"	N _{Rk,s} [kN]	26	41	59	110	172	247	281
Partial safety factor	γ _{Ms,N} ¹⁾ [-]		1	· · · · ·	87		1	2,86
Characteristic resistance "Stainless steel HCR"		24	38	55	102	159	229	365
Partial safety factor	γ _{Ms,N} ¹⁾ [-]				2,6			
Combined Pull-out and Concrete cone failu	re ²⁾							
Characteristic bond resistance in non-cracked			• •	1: dry or v		ete)		
	a,uncr [N/mm²]	,	16,0	16,0	15,0	14,0	13,0	13,0
	a,uncr [N/mm²]	9,0	9,0	9,0	8,5	8,0	7,5	7,0
Partial safety factor $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Mc}$					1,8 ⁴⁾			
Characteristic bond resistance in non-cracked	concrete C20/2	25 (used c	ategory	2: floodec	l bore hol	e)		
	a,uncr [N/mm²]		14,0	14,0	13,0	13,0	12,0	11,0
emperature range II ³⁾ : 80°C / 50°C τ _{Rk}	a,uncr [N/mm²]	8,0	8,0	8,0	7,5	7,0	6,5	6,0
Partial safety factor $\gamma_{Mp} = \gamma_{Mc} =$	γ _{Msp} ¹⁾ [-]				2,1 5)			
	C25/30	1,02	1,03	1,03	1,04	1,05	1,06	1,07
	C30/37	1,05	1,06	1,07	1,09	1,11	1,13	1,16
ncreasing factor for $\tau_{Rk,p}$	C35/40	1,08	1,10	1,11	1,14	1,17	1,21	1,26
non-cracked concrete Ψ_c	C40/50	1,10	1,12	1,13	1,17	1,21	1,25	1,31
	C45/55	1,11	1,13	1,15	1,20	1,24	1,29	1,36
	C50/60	1,12	1,15	1,17	1,22	1,27	1,20	1,41
actor for non-cracked concrete k _{ucr} ⁶⁾ o		.,	1,10	.,	10,1	1,21	1,02	.,
Concrete cone failure					10,1			
Characteristic edge distance C _{cr.N}	[mm]	1			1,5∙h _{ef}			
Characteristic spacing $s_{cr,N}$					3∙h _{ef}			
plitting failure ²⁾	[]				0.16			
	► / L > 0.0	4.0		h	/h _{ef}			
	h / h _{ef} ≥ 2,0	1,0) h _{ef}	2	2,0 -			
Char. edge distance c _{cr.sp} [mm] for 2,0) > h / h _{ef} > 1,3	46 ha	- 1,8 h					
	5 > 11 / Her > 1,0	-,0 Het	1,011	1	,3 -			
ith h. concrete member thickness,	h / h _{ef} ≤ 1,3	2,2	6 h _{ef}		-			,sp
h ^{ef} effective anchorage depth				1		1,0 ⋅ h _{ef} 2	,26 ∙h _{ef}	
	cr,sp [mm]				$2 c_{cr,sp}$			
Partial safety factor (dry or wet concrete)	<u>γ_{Msp} [-]</u>				1,8 ⁴⁾ 2,1 ⁵⁾			
Partial safety factor (flooded bore hole)	γ _{Msp} ′ [⁻]	I						
In absence of national regulations.		For calcula					nnex B1.	
Explanation see Annex B1		The partial					UTO 4000	4.0000
The partial safety factor $\gamma_2 = 1,4$ is included.		Parameter		mily for des	agn accord	ing to CEI	N/15 1992	4.2009
Parameter relevant only for design according to C	JEN/15 1992-4-5	:∠009, eq.	(8)					
PIT EPCON C8 XTREM								

for threaded rods

Threaded rods			M8	M10	M12	M16	M20	M24	M30
Steel failure					•			•	
Characteristic resistance "Maxima" rods		N _{Rk,s} [kN]	22	35	51	94	118	170	272
Partial safety factor	γ	/ _{Ms,N} ¹⁾ [-]		1,	71			1,49	
Characteristic resistance "Grade 5.8"		N _{Rk,s} [kN]	18	29	42	79	123	177	281
Partial safety factor	γ	/Ms,N ¹⁾ [-]				1,5			
Characteristic resistance "Grade 8.8"		N _{Rk,s} [kN]	29	46	67	126	196	282	449
Partial safety factor	γ	/Ms,N ¹⁾ [-]	07	50	0.4	1,5	0.15	050	504
Characteristic resistance "Grade 10.9" Partial safety factor		N_{Rk,s} [kN] _{(Ms,N} ¹⁾ [-]	37	58	84	157 1,4	245	353	561
Characteristic resistance "Stainless steel		(_{Ms,N} [⁻] N_{Rk,s} [kN]	26	41	59	1,4	172	247	281
Partial safety factor		Ms,N ¹⁾ [-]	20	41	1,		172	247	2,86
Characteristic resistance "Stainless steel		N _{Rk,s} [kN]	24	38	55	102	159	229	365
Partial safety factor		¹⁾ [-]				2,6			
Combined Pull-out and Concrete cone									
Characteristic bond resistance in cracke			ed categ	ory 1: dry	or wet c	oncrete)			
Temperature range I ³⁾ : 40°C / 24°C	τ _{Rk,cr}	[N/mm²]	9,5	9,5	9,0	8,5	8,5	8,5	7,0
Temperature range II ³⁾ : 80°C / 50°C	τ _{Rk,cr}	[N/mm²]	5,5	5,5	5,0	4,5	4,5	4,5	4,0
Partial safety factor $\gamma_{Mp} = \gamma_{Mp}$	$\gamma_{Mc} = \gamma_{Ms}$	¹⁾ [-]				1,8 ⁴⁾			
Characteristic bond resistance in cracke	d concret	e C20/25 (us	ed categ	ory 2: flo	oded bore	e hole)			
Temperature range I ³⁾ : 40°C / 24°C	τ _{Rk,cr}	[N/mm ²]	8,5	8,5	8,0	7,5	7,5	7,5	6,0
Temperature range II ³⁾ : 80°C / 50°C	τ _{Rk,cr}	[N/mm²]	4,5	4,5	4,5	4,0	4,0	4,0	3,5
Partial safety factor $\gamma_{Mp} = \gamma_{Mp}$	$\gamma_{Mc} = \gamma_{Ms}$	¹⁾ [-]				2,1 ⁵⁾			
		C25/30	1,02	1,02	1,02	1,03	1,03	1,04	1,05
	-	C30/37	1,04	1,05	1,05	1,06	1,07	1,09	1,10
Increasing factor for $\tau_{Rk,p}$	-	C35/40	1,06	1,07	1,08	1,10	1,11	1,13	1,16
in cracked concrete	ψc	C40/50	1,07	1,08	1,09	1,11	1,14	1,16	1,19
	-	C45/55	1,08	1,09	1,11	1,13	1,16	1,18	1,22
	-	C50/60	1,09	1,10	1,12	1,15	1,17	1,20	1,25
Factor for cracked concrete	k _{cr} ⁶⁾ or k	8 ⁷⁾ [-]				7.2			
Concrete cone failure									
Characteristic edge distance	C _{cr,N}	[mm]				1,5∙h _{ef}			
Characteristic spacing	S _{cr,N}	[mm]				3∙h _{ef}			
Splitting failure ²⁾									
		h / h _{ef} ≥ 2,0	1 0	h _{ef}	h,	/h _{ef}			
		$117 H_{ef} = 2.0$	1,0	riet	2	2,0 -			
Char. edge distance c _{cr,sp} [mm] for	2,0 >	h / h _{ef} > 1,3	4,6 h _{ef}	- 1,8 h	1	,3		.	
with h. concrete member thickness,									
h ^{ef} effective anchorage depth		h / h _{ef} ≤ 1,3	2,26	S h _{ef}		Т	1,0∙h _{ef} 2	,26 h _{ef} c _{cr}	,sp
Characteristic spacing	S _{cr,sp}	[mm]				2 c _{cr,sp}			
Partial safety factor (dry or wet concret		¹⁾ [-]				1,8 ⁴⁾			
Partial safety factor (flooded bore hole)		¹⁾ [-]				2,1 ⁵⁾			
In absence of national regulations.		²⁾ F	For calcula	tion of cor	ncrete failu	re and spli	tting see A	nnex B1.	
Explanation see Annex B1		⁴⁾ T	he partial	safety fac	tor $\gamma_2 = 1,2$	is include	d.		
The partial safety factor $\gamma_2 = 1,4$ is included					only for des	ign accord	ling to CE	V/TS 1992-	-4:2009
Parameter relevant only for design accordi	ng to CEN	/TS 1992-4-5:	2009, eq.	(8)					
SPIT EPCON C8 XTREM									

Table C3: Characteristic resistances for shear loads in cracked and non-cracked concrete Design method A. acc. to TR 029 or CEN/TS 1992-4. for threaded rods

Design method A, acc. to TR 029 or CEN/TS 1992-4, for threaded rods										
Threaded rods			M8	M10	M12	M16	M20	M24	M30	
Steel failure without lever arm										
Factor considering ductility ¹⁾	k ₂	[-]				1,0				
Characteristic resistance "Maxima" rods	$V_{Rk,s}$	[kN]	11	17	25	47	59	85	136	
Factor considering ductility ¹⁾	k ₂	[-]				0,8				
Characteristic resistance "Grade 5.8"	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	140	
Characteristic resistance "Grade 8.8"	V _{Rk,s}	[kN]	15	23	34	63	98	141	224	
Characteristic resistance "Grade 10.9"	$V_{Rk,s}$	[kN]	18	29	42	79	123	177	281	
Characteristic resistance "Stainless steel A4"	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	140	
Characteristic resistance "Stainless steel HCR"	$V_{Rk,s}$	[kN]	12	19	27	51	80	115	182	
Steel failure with lever arm										
Characteristic resistance "Maxima" rods	M ⁰ _{Rk,s}	[Nm]	22	45	79	200	301	520	1052	
Characteristic resistance "Grade 5.8"	M ⁰ _{Rk.s}	[Nm]	19	37	66	166	325	561	1125	
Characteristic resistance "Grade 8.8"	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799	
Characteristic resistance "Grade 10.9"	M ⁰ Rk,s	[Nm]	37	75	131	333	649	1123	2249	
Characteristic resistance "Stainless steel A4"	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1125	
Characteristic resistance "Stainless steel HCR"	M ⁰ _{Rk,s}	[Nm]	24	49	85	216	422	730	1462	
Partial safety factor										
Partial safety factor "Maxima" rods	γ _{Ms,V} ²⁾	[-]		1,	43			1,5		
Partial safety factor "Grade 5.8"	γ _{Ms,V} ²⁾	[-]				1,25				
Partial safety factor "Grade 8.8"	γ _{Ms,V} ²⁾	[-]				1,25				
Partial safety factor "Grade 10.9"	γ _{Ms,V} ²⁾	[-]				1,5				
Partial safety factor "Stainless steel A4"	γ _{Ms,V} ²⁾	[-]			1.	56			2,38	
Partial safety factor "Stainless steel HCR"	γ _{Ms,V} ²⁾	[-]			- ,	2,17			_,	
Concrete pryout failure	/ IVIS, V					2,				
	k ³⁾									
k factor	$k_{3}^{4)}$	[-]	1,0	(for h _{ef} <	60mm)	or	2,0 (fc	or h _{ef} ≥ 60	mm)	
Partial safety factor	γ _{Mcp} ²⁾	[-]				1,5 ⁵⁾				
Concrete edge failure ⁶⁾										
Partial safety factor	γ _{Mc} 2)	[-]				1,5 ⁵⁾				
¹⁾ Parameter relevant only for design accor ²⁾ In absence of national regulations ³⁾ Parameter relevant only for design accor ⁴⁾ Parameter relevant only for design accor ⁵⁾ The partial safety factor $\gamma_2 = 1,0$ is includ ⁶⁾ Concrete edge failure see chapter 5.2.3.4	ding to T ding to C ed.	TR 029 CEN/T	9, eq.(5.7) S 1992-4) -5:2009, §						

SPIT EPCON C8 XTREM

Design according to TR 029 or CEN/TS 1992-4

Characteristic values for shear loads for threaded rods

Annex C3

Threaded rods			M8	M10	M12	M16	M20	M24	M30
Non-cracked concret	te Temperatu	ure range I ²⁾ : 4()°C / 24°(
Displacement	δ _{N0}	[mm/(N/mm²)]	0,02	0,02	0,03	0,04	0,06	0,07	0,09
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,05	0,07	0,09	0,12	0,16	0,20	0,25
Non-cracked concre	te Temperatu	ure range II ²⁾ : 8	0°C / 50°	с					
Displacement	δ _{N0}	[mm/(N/mm²)]	0,02	0,02	0,03	0,04	0,06	0,07	0,09
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,05	0,07	0,07	0,12	0,16	0,20	0,25
Cracked concrete Te	mperature ra	ange I ²⁾ :40°C	/ 24°C						
Displacement	δ _{Ν0}	[mm/(N/mm²)]	0,06	0,06	0,06	0,07	0,07	0,07	0,08
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,16	0,17	0,18	0,19	0,20	0,22	0,24
Cracked concrete Te	mperature ra	ange II ²⁾ : 80°C /	/ 50°C						
Displacement	δ _{Ν0}	[mm/(N/mm²)]	0,06	0,06	0,06	0,07	0,07	0,07	0,08
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,16	0,17	0,18	0,19	0,20	0,22	0,24

Table C4: Displacements under tension loads ¹⁾, for threaded rods

¹⁾ Calculation of displacement under tension load: τ_{Sd} design value of bond stress. Displacement under short term loading = $\delta_{N0} \cdot \tau_{Sd} / 1.4$

Displacement under long term loading = $\delta_{N^{\infty}} \cdot \tau_{Sd} / 1,4$

²⁾ Explanations see Annex B1.

Table C5: Displacements under shear loads ¹⁾, for threaded rods

Threaded rods				M10	M12	M16	M20	M24	M30
Displacement	δ_{V0}	[mm/kN]	0,11	0,10	0,09	0,08	0,06	0,04	0,02
Displacement	δγ∞	[mm/kN]	0,17	0,15	0,14	0,12	0,09	0,06	0,03

¹⁾ Calculation of displacement under shear load: V_{Sd} design value of shear load. Displacement under short term loading = $\delta_{V0} \cdot V_{Sd} / 1,4$ Displacement under long term loading = $\delta_{V^{\infty}} \cdot V_{Sd} / 1,4$

SPIT EPCON C8 XTREM	
Design according to TR 029 or CEN/TS 1992-4	Annex C4
Displacements	
for threaded rods	

Rebars Bst 500s			φ 8	φ 10	φ 12	φ 16	ф 20	ф 25	 \$26	ф 28	ф 32	
Steel failure												
Characteristic resistance 1)	N _{Rk,s}	[kN]	28	43	62	111	173	270	292	339	442	
Partial safety factor ²⁾	γMs,N) [-]					1,4					
Combined Pull-out and Concrete of												
Characteristic bond resistance in nor			C20/25	(used c	ategory	1. dry o	r wet co	ncrete)				
Temperature range I ⁵⁾ : 40°C / 24°C			14,0	14,0	14,0	14,0	13,0	13,0	13,0	13,0	12,0	
Temperature range II ⁵ : 80°C / 50°C			8,0	8,0	7,5	7,5	7,5	7,5	7,0	7,0	7,0	
Partial safety factor $\gamma_{Mp} = \gamma_N$		a)	0,0	0,0	7,0	7,0	1,8 ⁶⁾	1,0	1,0	7,0	7,0	
Characteristic bond resistance in nor			C20/25	(used ca	ategory	2: flood		hole)				
Temperature range I ⁵⁾ : 40°C / 24°C	τ _{Rk.unc}		13,0	13,0	12,0	12,0	12,0	12,0	12,0	11,0	11,0	
Temperature range II ⁵⁾ : 80°C / 50°C			7,0	7,0	7,0	7,0	6,5	6,5	6,5	6,5	6,0	
Partial safety factor $\gamma_{Mp} = \gamma_{N}$		2)			/	, ,	2,1 7)					
	10 1110	C25/30	1,02	1,03	1,03	1,04	1,05	1,06	1,06	1,07	1,08	
		C30/37	1,05	1,06	1,07	1,09	1,11	1,14	1,14	1,15	1,18	
Increasing factor for $\tau_{Rk,p}$		C35/40	1,08	1,10	1,11	1,14	1,17	1,22	1,22	1,24	1,27	
in non-cracked concrete	ψc	C40/50	1,10	1,12	1,13	1,17	1,21	1,26	1,27	1,29	1,33	
		C45/55	1,11	1,13	1,15	1,20	1,24	1,30	1,31	1,33	1,38	
		C50/60	1,12	1,15	1,17	1,22	1,27	1,34	1,35	1,38	1,44	
Factor for non-cracked concrete	k ₈ ⁹⁾ [-]		,	,	,	10,1	,	,	,	,		
		10 []					10,1					
Concrete cone failure												
Characteristic edge distance	C _{cr,N}	[mm]					1,5∙h _{ef}					
Characteristic spacing	S _{cr,N}	[mm]					3∙h _{ef}					
Splitting failure ⁴⁾												
		(1		4.0.1			h/h _{ef} ↑					
	n	/ h _{ef} ≥ 2,0		1,0 h	ef		2,0					
Char. edge distance c _{cr.sp} [mm] for	20 \ h	/ h _{ef} > 1,3		l,6 h _{ef} -	1 8 h							
	2,0 2 11	/ Tiel > 1,0		r,o ne	1,011		1,3					
with h. concrete member thickness,	h	/ h _{ef} ≤ 1,3		2,26 ł	lef		+			Ccr	sp	
h ^{et} effective anchorage depth		,		_,	-61			1,0	h _{ef} 2,2	6∙h _{ef}		
Characteristic spacing	S _{cr,sp}	[mm]					$2\;c_{\text{cr,sp}}$					
Partial safety factor (dry or wet con	crete)	γ _{Msp} ³⁾ [-]					1,8 ⁶⁾					
Partial safety factor (flooded bore h	nole) [,]	γ _{Msp} ³⁾ [-]					2,1 ⁷⁾					
¹⁾ The characteristic tension rescalculated acc. Technical Repo				hat do	not fulf	il the re	equireme	ents aco	c. DIN 4	488 sha	all be	
$^{2)}$ The partial safety factor $\gamma_{\text{Ms,N}}$	for reb	ars that do	not ful	fil the re	equirem	ents ac	c. DIN 4	488 sha	ll be ca	lculated	acc.	
TR029, Eq. (3.3a).												
 ³⁾ In absence of national regulation ⁴⁾ For coloulation of concrete failulation 												
	ure and	splitting see	e Annex	B1.								
	.											
The partial safety factor $\gamma_2 = 1$,												
The partial salety factor $\gamma_2 = 1$,				1000 4	2000							
⁸⁾ Parameter relevant only for de	-	-										
⁹⁾ Parameter relevant only for de												

Design according to TR 029 or CEN/TS 1992-4

Characteristic values for tension loads in non-cracked concrete for rebars

Annex C5

Rebars Bst 500s			φ 8	φ 10	φ 12	φ 16	φ 20	¢ 25	 \$ 26	ф 28	ф 32
Steel failure											
Characteristic resistance 1)	N _{Rk,s}	[kN]	28	43	62	111	173	270	292	339	442
Partial safety factor ²⁾	γ _{Ms,N} ³⁾	[-]		-			1,4			-	
Combined Pull-out and Concrete co	ne failu	re ⁴⁾									
Characteristic bond resistance in crack	ked con	crete C20/	25 (use	d catego	ory 1: dr	y or wet	concret	te)			
Temperature range I ⁵ : 40°C / 24°C	τ _{Rk,cr}	[N/mm²]	9,5	9,5	9,0	8,5	8,5	8,0	8,0	7,5	6,5
Temperature range II ⁵ : 80°C / 50°C	τ _{Rk,cr}	[N/mm ²]	5,5	5,5	5,0	4,5	4,5	4,5	4,5	4,0	3,5
Partial safety factor $\gamma_{Mp} = \gamma_{Mc}$	$= \gamma_{Msp}^{3}$	[-]			- "		1,8 ⁶⁾				
Characteristic bond resistance in crack	kea con	crete C20/			-			, 	7.0	0.5	0.0
Temperature range I ⁵ :40°C / 24°CTemperature range II ⁵ :80°C / 50°C		[N/mm ²] [N/mm ²]	8,5 4,5	8,5 4,5	8,0 4,5	7,5 4,0	7,5	7,5 4,0	7,0 4,0	6,5 3,5	6,0
Partial safety factor $\gamma_{Mp} = \gamma_{Mc}$	21		4,5	4,5	4,5	4,0	4,0 2,1 ⁷⁾	4,0	4,0	3,5	3,0
$\gamma_{Mp} = \gamma_{Mc}$	- /Msp	C25/30	1,02	1,02	1,02	1,03	1,03	1,04	1,04	1,04	1,05
	_	C30/37	1,02	1,05	1,05	1,06	1,00	1,09	1,09	1,10	1,11
Increasing factor for τ_{Rkp}	_	C35/40		1,07	1,08	1,10	1,11	1,14	1,14	1,15	1,17
in cracked concrete $\psi_{RK,p}$		C40/50	1,07	1,08	1,09	1,11	1,14	1,16	1,17	1,18	1,20
	_	C45/55	1,08	1,09	1,11	1,13	1,16	1,19	1,19	1,21	1,23
		C50/60	1,09	1,10	1,12	1,15	1,17	1,21	1,22	1,23	1,26
Factor for cracked concrete k	_{ucr} ⁸⁾ or	k ₈ ⁹⁾ [-]					7,2				
Concrete cone failure											
		[mm]					156				
	C _{cr,N}	[mm] [mm]					1,5∙h _{ef} 3∙h _{ef}				
· · · · ·	S _{cr,N}	[iiiiii]					J·net				
Splitting failure ⁴⁾											
	h /	h _{ef} ≥ 2,0		1,0 h	ef		h/h _{ef}				
—							2,0 -				
Char. edge distance $c_{cr,sp}$ [mm] for 2	2,0 > h /	h _{ef} > 1,3	2	1,6 h _{ef} -	1,8 h		1,3 -				
with h. concrete member thickness,	h /	h _{ef} ≤ 1,3		2,26 ł). <i>4</i>		+			c _{cr,}	
h ^{ef} effective anchorage depth	,	ner = 1,0		2,201	et			1,0	h _{ef} 2,2	6∙h _{ef} ^{−cr,}	sh
Characteristic spacing	S _{cr,sp}	[mm]					$2\;c_{\text{cr,sp}}$				
Partial safety factor (dry or wet concr	rete) γ⊾	³⁾ [-]					1,8 ⁶⁾				
Partial safety factor (flooded bore hol	le) γ⊾	³⁾ [-]					2,1 ⁷⁾				
 The characteristic tension resisting calculated acc. Technical Report The partial safety factor γ_{Ms,N} for TR029, Eq. (3.3a). In absence of national regulation For calculation of concrete failure Explanations see Annex B1. The partial safety factor γ₂ = 1,2 The partial safety factor γ₂ = 1,4 	t TR029 or reba ns. e and sp is includ gn acco), Equation rs that do olitting sea ded. ded. rding to C	n (5.1). o not ful e Annex CEN/TS	fil the r B1.	equirem 2009.	ents ac	c. DIN 4				
 ⁸⁾ Parameter relevant only for designation ⁹⁾ Parameter relevant only for designation 											
⁹⁾ Parameter relevant only for design											
⁹⁾ Parameter relevant only for designment of the second		EN/TS 1	992-4				Annex	C6			
⁹⁾ Parameter relevant only for design	or C			operat			Annex	C6			

Table C8: Characteristic resistances for shear loads in cracked and non-cracked concrete Design method A, acc. to TR 029 or GEN/TS 1992-4, for rebars

Besign inc		, 400.		020	O EI V		,	IIOBai	0		
Rebars Bst 500s			 \$	φ 10	φ 12	φ 16	ф 20	ф 25	ф 26	ф 28	 \$32
Steel failure without lever ar	m										
Factor considering ductility ¹	k ₂	[-]					0,8				
Characteristic resistance ²⁾	$V_{Rk,s}$	[kN]	14	22	31	55	86	135	146	169	221
Steel failure with lever arm											
Characteristic resistance 3)	$M^0_{Rk,s}$	[Nm]	33	65	112	265	518	1012	1139	1422	2123
Partial safety factor											
Partial safety factor 4)	γ _{Ms,V} ⁵⁾	[-]					1,5				
Concrete pryout failure											
k factor	k ⁶⁾ k ₃ ⁷⁾	[-]		1,0 ((for h _{ef} <	60mm)	or	2,0 (f	or h _{ef} ≥ 6	0mm)	
Partial safety factor	γ _{Mcp} ⁵⁾	[-]					1,5 ⁸⁾				
Concrete edge failure ⁹⁾											
Partial safety factor	γ _{Mc} ⁵⁾	[-]					1,5 ⁸⁾				
 Parameter relevant only ¹⁾ Parameter relevant only ²⁾ The characteristic tens calculated acc. TR 029, ³⁾ The characteristic bence 	ion resist Eq. (5.6).	ance V	r _{Rk,s} for	rebars t	hat do n	ot fulfil 1	3.2.1 the requi				

³⁾ The characteristic bending resistance M⁰_{Rk,s} for rebars that do not fulfil the requirements acc. DIN 488 shall be calculated acc. TR 029, Eq. (5.6b).

⁴⁾ The partial safety factor $\gamma_{Ms,V}$ for rebars that do not fulfil the requirements acc. DIN 488 shall be calculated acc. TR029, Eq. (3.3b) or (3.3c).

⁵⁾ In absence of national regulations

⁶⁾ Parameter relevant only for design according to TR 029, eq.(5.7)

7) Parameter relevant only for design according to CEN/TS 1992-4-5:2009, § 6.3.3

⁸⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

⁹⁾ Concrete edge failure, see chapter 5.2.3.4 of TR 029.

SPIT EPCON C8 XTREM

Design according to TR 029 or CEN/TS 1992-4

Characteristic values for shear loads for rebars

Annex C7

Rebars Bst 500s				φ 10	φ 12	φ 16	φ 20	ф 25	φ 26	φ 28	φ 32
Non-cracked conc	rete, Tem	perature range	l ²⁾ : 40°(C / 24°C							
Displacement	δ _{ΝΟ}	[mm/(N/mm²)]	0,02	0,02	0,03	0,04	0,06	0,07	0,07	0,08	0,09
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,05	0,07	0,00	0,12	0,16	0,20	0,21	0,23	0,27
Non-cracked conc	rete, Tem	perature range	II ²⁾ : 80°	°C / 50°C	;						
Displacement	δ _{ΝΟ}	[mm/(N/mm²)]	0,02	0,02	0,03	0,04	0,06	0,07	0,07	0,08	0,09
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,05	0,07	0,00	0,12	0,16	0,20	0,21	0,23	0,27
Cracked concrete,	Temperat	ture range I ²⁾ :	40°C / 2	24°C							
Displacement	δ _{Ν0}	[mm/(N/mm²)]	0,06	0,06	0,06	0,07	0,07	0,08	0,08	0,08	0,08
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,16	0,17	0,18	0,19	0,20	0,22	0,22	0,23	0,24
Cracked concrete,	Temperat	ture range II ²⁾ :	80°C / 5	0°C							
Displacement	δ _{N0}	[mm/(N/mm²)]	0,06	0,06	0,06	0,07	0,07	0,08	0,08	0,08	0,08
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,16	0,17	0,18	0,19	0,20	0,22	0,22	0,23	0,24

dor tonoion loodo ¹⁾ fo - -- 1-

Calculation of displacement under tension load: τ_{Sd} design value of bond stress.

Displacement under short term loading = $\delta_{N0} \cdot \tau_{Sd} / 1.4$

Displacement under long term loading = $\delta_{N^{\infty}} \cdot \tau_{Sd} / 1,4$

²⁾ Explanations, see Annex B1.

Table C10: Displacements under shear loads ¹⁾, for rebars

Rebars Bst 500s			φ 8	φ 10	φ 12	φ 16	ф 20	ф 25	ф 26	ф 28	ф 32
Displacement	δνο	[mm/kN]	0,11	0,10	0,09	0,08	0,06	0,04	0,03	0,03	0,03
Displacement	δν∞	[mm/kN]	0,17	0,15	0,14	0,12	0,09	0,06	0,05	0,04	0,04

 $^{1)}$ Calculation of displacement under shear load: V_{Sd} design value of shear load.

Displacement under short term loading = $\delta_{vo} \cdot V_{Sd} / 1,4$

Displacement under long term loading = $\delta_{v^{\infty}} \cdot V_{\text{Sd}} \, / \, 1,4$

SPIT EPCON C8 XTREM

Design according to TR 029 or CEN/TS 1992-4

Annex C8

Displacements for rebars

The seismic performance of anchors subjected to seismic loading is categorized by performance categories C1 and C2. Seismic performance category C1 provides anchor capacities only in terms of resistances at ultimate limit state, while seismic performance category C2 provides anchor capacities in terms of both resistances at ultimate limit state and displacements at damage limitation state and ultimate limit state.

Table C11 relates the seismic performance categories C1 and C2 to the seismicity level and building importance class. The level of seismicity is defined as a function of the product a_g . S, where a_g is the design ground acceleration on Type A ground and S the soil factor both in accordance with EN 1998-1.

The value of a_g or that of the product $a_g \cdot S$ used in a Member State to define thresholds for the seismicity classes may be found in its National Annex of EN 1998-1 and may be different to the values given in Table C11. Furthermore, the assignment of the seismic performance categories C1 and C2 to the seismicity level and building importance classes is in the responsibility of each individual Member State.

Table C11: Recommended seismic performance categories for metal anchors

Se	ismicity level ^a	Importance Class acc. to EN 1998-1:2004, 4.2.5						
Class	iss a _g . S ^c		I II III					
Very low ^b	a _g ⋅S ≤ 0,05 <i>g</i>	No additional requirement						
Low ^b	0,05 <i>g</i> < a _g ⋅S ≤ 0,10 <i>g</i>	C1	C1 ^d c	C2				
> low	<i>a</i> g·S > 0,10 <i>g</i>	C1	C2					

a The values defining the seismicity levels are may be found in the National Annex of EN 1988-1.

b Definition according to EN 1998-1:2004, 3.2.1.

c a_g = design ground acceleration on Type A ground (EN 1998-1:2004, 3.2.1),

S = soil factor (see e.g. EN 1998-1:2004, 3.2.2).

- d C1 for Type 'B' connections (see TR045 §5.1) for fixings of non-structural elements to structures
- e C2 for Type 'A' connections (see TR045 § 5.1) for fixings structural elements to structures

SPIT EPCON C8 XTREM

Seismic performance categories

Table C12: Reduction factor α_{seis}						
Loading	Failure mode	α _{seis} - Single anchor ¹⁾	α _{seis} - Anchor Group			
	Steel failure	1,0	1,0			
Tension	Pull-out failure	1,0	0,85			
rension	Concrete cone failure	0,85	0,75			
	Splitting failure	1,0	0,85			
	Steel failure	1,0	0,85			
Shear	Concrete edge failure	1,0	0,85			
	Concrete pry-out failure	0,85	0,75			

¹⁾ In case of tension loading single anchor also addresses situations where only ONE anchor in a group of anchors is subjected to tension.

The seismic design shall be carried out according to TR045 Technical Report "Design of metal anchors for use in concrete under seismic actions". The characteristic seismic resistance $R_{k,seis}$ ($N_{Rk,seis}$, $V_{Rk,seis}$) of a fastening shall be calculated for each failure mode as follows :

 $R_{k,seis} = \alpha_{gap} \cdot \alpha_{seis} \cdot R^{U}_{k,seis}$

where

- α_{gap} Reduction factor to take into account inertia effects due to an annular gap between anchor and fixture in case of shear loading;
 - = 1.0 in case of no hole clearance between anchor and fixture;
 - = 0.5 in case of connections with standard hole clearance acc. TR 029 Table 4.1.
- α_{seis} Reduction factor to take into account the influence of large cracks and scatter of load/displacement curves, see Table C12;

 $R^{0}_{k,seis}$ Basic characteristic seismic resistance for a given failure mode :

For steel and pull-out failure under tension load and steel failure under shear load, $R^{0}_{k,seis}$ (i.e. $N_{Rk,s,seis}$, $N_{Rk,p,seis}$, $V_{Rk,s,seis}$) shall be taken from : - Annex C11 for performance category C1

For all other failure modes $R^{0}_{k,seis}$ shall be determined as for the design situation for static and quasi-static loading according to ETAG 001, Annex C (i.e. *Nrk,c*, *Nrk,sp*, *Vrk,c*, *Vrk,cp*).

SPIT EPCON C8 XTREM

Reduction factors and characteristic seismic resistances

Annex C10

Table C13: Characteristic resistances in case of seismic performance category C1 acc. TR045 "Design of Metal anchor under Seismic Actions"

Threaded rods		M8	M10	M12	M16	M20	M24	M30	
	Tens	ion loads	I		1				
Steel failure									
Seismic reduction factor	α _{N,seis}	[-] -		1,0		-	-	-	
Characteristic resistance "Maxima" rods	N _{Rk,s,seis}	[kN]	35	51	94	-	-	-	
Partial safety factor	1) γMs,seis	[-]		71	• ·		1,49		
Characteristic resistance "Grade 5.8"	N _{Rk,s,seis}	[kN] -	29	42	79	-	-	-	
Characteristic resistance "Grade 8.8"	N _{Rk,s,seis}	[kN] -	46	67	126	-	-	-	
Partial safety factor	1) γMs,seis	[-]			1,50				
Characteristic resistance "Grade 10.9"	N _{Rk,s,seis}	[kN]	n.a.						
Partial safety factor	1) γMs,seis	[-]			1,4				
Characteristic resistance "Stainless steel A4"	N _{Rk,s,seis}	[kN] -	41	59	110	-	-	-	
Partial safety factor	γMs,seis ¹⁾	[-]	1		87	1	1	2,86	
Characteristic resistance "Stainless steel HCR"	N _{Rk,s,seis}	[kN] -	38	55	102	-	-	-	
Partial safety factor	1) γMs,seis	[-]			2,6				
Combined pullout and concrete cone failure	e		r	r		1	r		
Seismic reduction factor	α _{N,seis}	[-] -	0,65	0,63	0,80	-	-	-	
Characteristic bond resistance in cracked concre	,		1		rete)	1	1	r –	
Femperature range I ² : 40°C / 24°C	τ _{Rk,p,seis} [Ν	l/mm²] -	6,2	5,7	6,8	-	-	-	
Temperature range II ²⁾ : 80°C / 50°C	τ _{Rk,p,seis} [Ν	l/mm²] -	3,6	3,2	3,6	-	-	-	
Partial safety factor	γMp,seis	[-]	1		1,8 ³⁾	1			
Characteristic bond resistance in cracked concre	te C20/25 (u		: flooded	l bore ho					
Temperature range I ²⁾ : 40°C / 24°C	τ _{Rk,p,seis} [Ν		5,5	5,1	6,0	-	-	-	
Femperature range II ² : 80°C / 50°C	τ _{Rk,p,seis} [Ν		2,9	2,9	3,2	_	-	-	
Partial safety factor	Rk,p,seis 1) γMp,seis	[-]	2,0	2,0	2,1 ⁴⁾				
		ar loads			۲,۱				
	3116								
Steel failure without lever arm			1	*)		1		-	
Seismic reduction factor	α _{V,seis}	[-] -		0,70 ^{*)}		-	-	-	
Characteristic resistance "Maxima" rods	V _{Rk,s,seis}	[kN] -	11,.9	17,5	32,9	-	-	-	
Partial safety factor Characteristic resistance "Grade 5.8"	1) γMs,seis	[-]		43	27.2		1,5		
Characteristic resistance "Grade 8.8"	V _{Rk,s,seis} V _{Rk,s,seis}	[kN] - [kN] -	10,.5 16,1	14,7 23,8	27,3 44,1	-	-	-	
Partial safety factor	V Rk,s,seis 1) γMs,seis	[-]	10,1	20,0	1,25	_	_	_	
Characteristic resistance "Grade 10.9"	V _{Rk,s,seis}	[kN]			n.a.				
Partial safety factor	γMs,seis	[-]			1,5				
Characteristic resistance "Stainless steel A4"	V _{Rk,s,seis}	[kN] -	14	21	38,5	-	-	-	
Partial safety factor	γMs,seis	[-]	I		56	1		2,38	
Characteristic resistance "Stainless steel HCR"	V _{Rk,s,seis}	[kN] -	13,3	18,9	35,7	-	-	-	
Partial safety factor	1) γMs,seis	[-]			2,17				
¹⁾ In absence of other national regulations.									
²⁾ Explanation see Annex B1.									
³⁾ The partial safety factor $\gamma_2 = 1,2$ is included	d.								
⁴⁾ The partial safety factor $\gamma_2 = 1,2$ is included									
*) Tests and assessment yield $\alpha_{V,seis} = [0,7]$	71 / 0,80 / 0,	7]. However, f	rom Oct.	2014 (do	oc. 805),	ΕΟΤΑ Ε	Expert G	roup	
for anchors does not allow $\alpha_{V,seis} > 0,7$ for								-	
The definition of seismic performance									

SPIT EPCON C8 XTREM	
Design according to TR045 Characteristic resistance under seismic action (C1)	Annex C11
for threaded rods	