

ENVIRONMENTAL PRODUCT DECLARATION

1

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

FF-PIR POLYURETHANE INSULATION FINNFOAM OY

GENERAL INFORMATION

MANUFACTURER INFORMATION

Manufacturer	Finnfoam Oy
Address	Finnfoam Oy, Satamakatu 5, 24100 Salo, Finland
Contact details	Sari Judin, <u>sari.judin@finnfoam.fi</u>
Website	www.finnfoam.fi

PRODUCT IDENTIFICATION

Product name	FF-PIR Polyurethane Insulation
Place of production	Salo, Finland

Jossia farla Caum I

Jessica Karhu RTS EPD Committee secretary

2

Laura Apilo Managing Director

EPD INFORMATION

EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

EPD program operator	The Building Information Foundation RTS sr Malminkatu 16 A, 00100 Helsinki, Finland <u>http://cer.rts.fi</u>
EPD standards	This EPD is in accordance with EN 15804 +A2, ISO 14025 and ISO 21930 standards.
Product category rules (PCR)	The CEN standard EN 15804+A2 serves as the core PCR. In addition, the RTS PCR (English version, 26.8.2020) is used.
EPD author	lpek Goktas, at One Click LCA Ltd Suvilahdenkatu 10 B 00500 Helsinki, Finland <u>www.oneclicklca.com</u>
EPD verification	Independent verification of this EPD and data, according to ISO 14025: □ Internal certification ☑ External verification
EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
Verification date	22.7.2021
EPD number	RTS_140_21
ECO Platform nr.	-
Publishing date	23.7.2021
EPD valid until	23.7.2026

PRODUCT INFORMATION

PRODUCT DESCRIPTION

Finnfoam Oy only uses PIR insulation materials whose fire endurance is significantly better than that of PUR insulation materials. The fire rating of the insulating foam component of FF-PIR insulation is D-s2, d0. The CE marked FF-PIR is also a mold-proof and safe material in terms of moisture performance. FF-PIR is one of the most effective insulation materials and thermal conductivity of FF-PIR insulation products is 0.022 W/mK.

PRODUCT RAW MATERIAL COMPOSITION

Material	FF-PIR AL Weight, kg	FF-PIR PL Weight, kg	FF-PIR FR Weight, kg
Aluminium laminate (AL)	0.09	-	-
Plastic laminate (PL)	-	0.05	-
Fire-Resistant laminate (FR)	-	-	0.23
MDI isocyanate	0.58	0.60	0.49
Polyester polyol	0.28	0.30	0.24
Pentane	0.05	0.05	0.04

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Fossil materials	≥ 77	Europe
Minerals	≤ 23	Europe
Metals	≤ 9	Europe
Bio-based materials	-	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1% (1000 ppm).

PRODUCT APPLICATION

FF-PIR thermal insulation products ensure energy-efficiency in walls, roof/ceilings, and the sauna with significantly thinner layers of insulation.

TECHNICAL SPECIFICATIONS

FF-PIR is available in thicknesses 20 - 240 mm. The study has been conducted on an average FF-PIR insulation panel, with a total thickness of 100 mm. Nominal density of the panel is 33 kg/m3 without coating/laminate, and for example 36.2 kg/m3 with the aluminium-paper coating. Thermal conductivity is 0.022 W(mK). FF-PIR panels are mainly used in insulating roofs and walls.

PRODUCT STANDARDS

EN 13165:2012 Thermal insulation products for buildings. Factory made rigid polyurethane foam (PUR) products. Specification.

PHYSICAL PROPERTIES OF THE PRODUCT

Detailed physical information can be found from the manufacturer's webpage (<u>www.finnfoam.fi/tuotteet/ff-pir/</u>).

ADDITIONAL TECHNICAL INFORMATION

Further information can be found at <u>www.finnfoam.fi</u>.

3

PRODUCT LIFE CYCLE

MANUFACTURING AND PACKAGING (A1-A3)

The main raw materials of the polyurethane production include MDIisocyanate and polyester polyol. The product also contains small amounts of fire retardants as well as colouring. The raw materials are first mixed, after which the mass is evenly spread and expanded with pentane. Most of the pentane remains in the product. The panel is then coated with aluminium, plastic or fire-resistant laminate and cut. The finished product is trimmed, packed into plastic and moved to storage from where it can be shipped to the customers. PIRwaste produced during the manufacturing process is directed to Warmotech factory as a raw material. The production loss is considered in the mass balance.

TRANSPORT AND INSTALLATION (A4-A5)

Annual delivery rates are taken into consideration for transportation scenario. There is no significant weight loss due to the emission of the rest of the pentane in the product during transportation. Transportation impacts occurred from delivering of the product cover direct exhaust emissions of fuel, environmental impacts of fuel production, as well as related infrastructure emissions. (A4)

This EPD does not cover installation. Air, soil and water impacts during installation have not been studied. (A5)

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover use phase. Air, soil and water impacts during the use phase have not been studied. During the service life of the product, rest of the pentane is emitted. However, it does not have any harmful impact; therefore, it is not taken into consideration.

PRODUCT END OF LIFE (C1-C4, D)

The rest of the pentane is assumed to be emitted during the service life of the product; therefore, the mass loss due to this blowing agent is taken into consideration in end-of-life stage. Consumption of energy and natural resources in demolition process is assumed to be negligible. (C1) The distance for transportation to disposal is assumed as 50 km and the transportation method is assumed to be lorry. (C2) Considering the manufacturer's information, 100% of endof-life product is assumed to be recycled as it is easy to collect and qualified for recycling. (C3) The environmental impacts of disposal are zero since 100% of the end-of-life product is considered to be recycled. (C4) Thanks to the recycling process, end-of-life product replaces virgin material in further productions. (D)

4

LIFE CYCLE ASSESSMENT

LIFE CYCLE ASSESSMENT INFORMATION

Period for data 2019 year

DECLARED AND FUNCTIONAL UNIT

Declared unit	1 kg	
Mass per declared unit	1 kg	

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon	content in	product.	kg C
------------------------	------------	----------	------

Biogenic carbon content in packaging. kg C

SYSTEM BOUNDARY

The scope of the EPD is "cradle to gate with modules A4, C1-C4 and D". The modules A1 (Raw material supply), A2 (Transport) and A3 (Manufacturing), A4 (Transport), as well as C1 (Deconstruction/ demolition), C2 (Transport at end-of-life), C3 (Waste processing), C4 (Disposal) and D (benefits and loads beyond the system boundary) are included in the study.

Pro	duct s	tage		embly age			U	se stag	;e			End of life stage				Beyond the system boundaries		
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D	D	D
х	х	х	х	MND	MND	MND	MND	MND	MND	MND	MND	x	x	x	x	x	x	x
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	2 9	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling

Modules not declared = MND

CUT-OFF CRITERIA

5

The study does not exclude any modules or processes which are stated mandatory in the *EN 15804A1:2012+A2:2019* and *RTS PCR*. The study does not exclude any hazardous materials or substances.

The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes which data are available for are included in the calculation. There is no neglected unit process more than 1% of total mass and energy flows. The total neglected input and output flows do also not exceed 5% of energy usage or mass. The life cycle analysis includes all industrial processes from raw material acquisition to production, distribution, and end-of-life stages.

The modules A5, B1-B7 have not been calculated. Accordingly, at a minimum, used sources and generated waste during installation, and emitted pentane during service life are excluded.

The production of capital equipment, construction activities, and infrastructure, maintenance and operation of capital equipment, personnel-related activities, energy, and water use related to company management and sales activities are excluded.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is based on annual production rate and made with high accuracy and precision. The values for 1 kg of the produced product which is used within this study are calculated by considering the total product weight per annual production. The product output is fixed to 1 kg and the corresponding amount of product is used in the calculations.

In the production plant, several kinds of products are produced; since the production processes of these products are similar, the annual production percentages are taken into consideration for allocation. According to the ratio of the annual production of the declared product to the total annual production at the factory, the annual total energy consumption, packaging materials and the generated waste per the declared product are allocated. Subsequently, the produced product output fixed to 1kg and the corresponding amount of product is used in the calculations.

This LCA study is conducted in accordance with all methodological considerations, such as performance, system boundaries, data quality, allocation procedures, and decision rules to evaluate inputs and outputs. All estimations and assumptions are given below.

 Module A2, A4 & C2: Vehicle capacity utilization volume factor is assumed to be 1 which means full load. In reality it may vary but as the role of transportation emission in total results is small and so the variety in load assumed to be negligible. Empty returns are not taken into account as it is assumed that return trip is used by transportation companies to serve the needs of other clients.

- Module A4: Transportation doesn't cause losses as products are packaged properly. Also, volume capacity utilisation factor is assumed to be 1 for the nested packaged products. Additionally, transportation distances and vehicle types are assumed according to the delivery in the last year.
- Module C1: The impacts of the disassembly stage are assumed zero, since the consumption of energy and natural resources for disassembling the end-of-life product is negligible.
- Module C2: Transportation distance to the closest disposal area is estimated as 50 km and the transportation method is assumed as lorry which is the most common.
- Module C3, C4, D: According to the manufacturer's information, 100% of the end-of-life product is assumed to be recycled due to the recycling potential of the end-of-life product and its value in the market. In order the PIR-material at the end of its lifetime to be recycled and used as raw material in Warmotech products, boards have to be used according to the guidelines stated by Finnfoam; for example, product should not have been exposed to UV-radiation during the use. Module C4 impacts are zero as the products are considered to be 100 % collected for recycling. Module D considers the benefits of production of recycled material which replaces virgin material.

AVERAGES AND VARIABILITY

6

Any average and variation are not concerned since this EPD refers one specific product produced in one production plant. There are different laminate options for the product; however, the products with different laminates have been assessed independently. The results are given separately for each product with different laminates.

EPD

ENVIRONMENTAL IMPACT DATA

The LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks.

Note: "ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930" and "ENVIRONMENTAL IMPACTS - TRACI 2.1" are presented in ANNEX-1 and ANNEX-2 respectively.

FF-PIR WITH ALUMINIUM LAMINATE

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	СЗ	C4	D
Climate change – total	kg CO ₂ e	2.27E+00	2.08E-01	1.79E-01	2.66E+00	1.83E-02	MND	MND	0.00E+00	6.08E-03	6.19E-01	0.00E+00	-1.65E+00
Climate change – fossil	kg CO ₂ e	2.26E+00	2.08E-01	1.77E-01	2.65E+00	1.85E-02	MND	MND	0.00E+00	6.07E-03	6.19E-01	0.00E+00	-1.65E+00
Climate change – biogenic	kg CO ₂ e	6.65E-03	1.27E-04	5.58E-04	7.34E-03	1.34E-05	MND	MND	0.00E+00	3.72E-06	4.06E-05	0.00E+00	-4.69E-03
Climate change – LULUC	kg CO ₂ e	2.05E-03	6.93E-05	1.48E-03	3.60E-03	5.56E-06	MND	MND	0.00E+00	2.14E-06	2.00E-05	0.00E+00	-1.75E-03
Ozone depletion	kg CFC11e	4.95E-06	4.79E-08	1.95E-08	5.02E-06	4.34E-09	MND	MND	0.00E+00	1.39E-09	7.95E-09	0.00E+00	-4.56E-06
Acidification	mol H⁺e	7.75E-03	8.59E-04	7.26E-04	9.34E-03	7.76E-05	MND	MND	0.00E+00	2.50E-05	5.17E-03	0.00E+00	-5.58E-03
Eutrophication, aquatic freshwater ¹	kg Pe	3.29E-05	1.72E-06	7.94E-06	4.26E-05	1.50E-07	MND	MND	0.00E+00	5.25E-08	4.72E-07	0.00E+00	-1.58E-05
Eutrophication, aquatic marine	kg Ne	1.49E-03	2.57E-04	1.29E-04	1.88E-03	2.34E-05	MND	MND	0.00E+00	7.41E-06	3.02E-03	0.00E+00	-1.18E-03
Eutrophication, terrestrial	mol Ne	1.69E-02	2.83E-03	1.53E-03	2.13E-02	2.58E-04	MND	MND	0.00E+00	8.18E-05	2.93E-02	0.00E+00	-1.34E-02
Photochemical ozone formation	kg NMVOCe	5.42E-03	8.86E-04	3.07E-03	9.38E-03	8.30E-05	MND	MND	0.00E+00	2.57E-05	7.25E-03	0.00E+00	-6.85E-03
Abiotic depletion, minerals & metals ²	kg Sbe	3.09E-04	4.79E-06	7.16E-07	3.15E-04	3.15E-07	MND	MND	0.00E+00	1.52E-07	7.52E-07	0.00E+00	-1.37E-04
Abiotic depletion of fossil resources ²	MJ	6.92E+01	3.17E+00	5.32E+00	7.77E+01	2.87E-01	MND	MND	0.00E+00	9.26E-02	5.92E-01	0.00E+00	-6.25E+01
Water use ²	m ³ e deprived	4.61E-01	1.09E-02	7.07E-02	5.43E-01	1.07E-03	MND	MND	0.00E+00	3.29E-04	1.75E-02	0.00E+00	-4.06E-01

¹ The required characterisation method and data are in kg P-eq; to get PO₄e, multiply the result by 3.07.

FF-PIR WITH ALUMINIUM LAMINATE

ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Particulate matter	Incidence	1.33E-07	1.62E-08	3.92E-09	1.53E-07	1.67E-09	MND	MND	0.00E+00	4.69E-10	2.65E-07	0.00E+00	-7.43E-08
lonizing radiation, human health ³	kBq U235e	7.80E-01	1.39E-02	9.93E-02	8.93E-01	1.26E-03	MND	MND	0.00E+00	4.05E-04	2.12E-03	0.00E+00	-8.07E-01
Eco-toxicity (freshwater) ²	CTUe	2.57E+01	2.44E+00	2.76E+00	3.09E+01	2.20E-01	MND	MND	0.00E+00	7.23E-02	1.26E+01	0.00E+00	-1.43E+01
Human toxicity, cancer effects ²	CTUh	1.57E-09	6.74E-11	5.53E-11	1.69E-09	5.62E-12	MND	MND	0.00E+00	2.05E-12	4.15E-09	0.00E+00	-7.87E-10
Human toxicity, non-cancer effects ²	CTUh	3.11E-08	2.81E-09	1.41E-09	3.53E-08	2.60E-10	MND	MND	0.00E+00	8.30E-11	1.55E-08	0.00E+00	-2.90E-08
Land use related impacts/soil quality ²	-	1.09E+00	3.52E+00	1.54E-01	4.76E+00	4.34E-01	MND	MND	0.00E+00	1.03E-01	7.69E-01	0.00E+00	-3.15E+00

² EN 15804+A2 Disclaimer 2: "The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator."

³ EN 15804+A2 Disclaimer 1: "This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator."

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Renewable PER used as energy	MJ	2.29E+00	4.28E-02	1.29E+00	3.62E+00	3.62E-03	MND	MND	0.00E+00	1.32E-03	1.02E-02	0.00E+00	-2.68E+00
Renewable PER used as materials	MJ	4.98E-01	0.00E+00	0.00E+00	4.98E-01	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-4.58E-01
Total use of renewable PER	MJ	2.79E+00	4.28E-02	1.29E+00	4.12E+00	3.62E-03	MND	MND	0.00E+00	1.32E-03	1.02E-02	0.00E+00	-3.14E+00
Non-renewable PER used as energy	MJ	5.63E+01	3.17E+00	4.55E+00	6.40E+01	2.87E-01	MND	MND	0.00E+00	9.26E-02	5.92E-01	0.00E+00	-4.91E+01
Non-renewable PER used as materials	MJ	1.52E+01	0.00E+00	7.65E-01	1.60E+01	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-1.55E+01
Total use of non-renewable PER	MJ	7.14E+01	3.17E+00	5.32E+00	7.99E+01	2.87E-01	MND	MND	0.00E+00	9.26E-02	5.92E-01	0.00E+00	-6.46E+01
Use of secondary materials	kg	7.97E-02	0.00E+00	2.50E-04	8.00E-02	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.45E-02
Use of renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of non-renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of net fresh water	m ³	1.36E+01	5.91E-04	1.45E-03	1.36E+01	5.98E-05	MND	MND	0.00E+00	1.76E-05	5.66E-04	0.00E+00	-1.25E+01

PER abbreviation stands for primary energy resources.

FF-PIR WITH ALUMINIUM LAMINATE

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Hazardous waste	kg	1.32E-01	3.17E-03	1.12E-02	1.46E-01	2.79E-04	MND	MND	0.00E+00	9.64E-05	0.00E+00	0.00E+00	-4.44E-02
Non-hazardous waste	kg	1.40E+00	2.70E-01	2.91E-01	1.96E+00	3.09E-02	MND	MND	0.00E+00	8.01E-03	0.00E+00	0.00E+00	-7.28E-01
Radioactive waste	kg	3.23E-04	2.18E-05	4.28E-05	3.88E-04	1.97E-06	MND	MND	0.00E+00	6.34E-07	0.00E+00	0.00E+00	-3.42E-04

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Components for reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	9.53E-01	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

KEY INFORMATION TABLE (RTS) – KEY INFORMATION PER KG OF PRODUCT

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Climate change – total	kg CO₂e	2.27E+00	2.08E-01	1.79E-01	2.66E+00	1.83E-02	MND	MND	0.00E+00	6.08E-03	6.19E-01	0.00E+00	-1.65E+00
Abiotic depletion. minerals & metals ²	kg Sbe	3.09E-04	4.79E-06	7.16E-07	3.15E-04	3.15E-07	MND	MND	0.00E+00	1.52E-07	7.52E-07	0.00E+00	-1.37E-04
Abiotic depletion of fossil resources ²	MJ	6.92E+01	3.17E+00	5.32E+00	7.77E+01	2.87E-01	MND	MND	0.00E+00	9.26E-02	5.92E-01	0.00E+00	-6.25E+01
Water use ²	m ³ e deprived	4.61E-01	1.09E-02	7.07E-02	5.43E-01	1.07E-03	MND	MND	0.00E+00	3.29E-04	1.75E-02	0.00E+00	-4.06E-01
Use of secondary materials	kg	7.97E-02	0.00E+00	2.50E-04	8.00E-02	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.45E-02
Biogenic carbon content in product	kg C	N/A	N/A	0.00E+00	0.00E+00	N/A	MND	MND	N/A	N/A	N/A	N/A	N/A
Biogenic carbon content in packaging	kg C	N/A	N/A	0.00E+00	0.00E+00	N/A	MND	MND	N/A	N/A	N/A	N/A	N/A

FF-PIR WITH PLASTIC LAMINATE

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Climate change – total	kg CO₂e	1.82E+00	2.05E-01	1.79E-01	2.20E+00	1.83E-02	MND	MND	0.00E+00	6.06E-03	6.18E-01	0.00E+00	-1.65E+00
Climate change – fossil	kg CO₂e	1.82E+00	2.05E-01	1.77E-01	2.20E+00	1.85E-02	MND	MND	0.00E+00	6.06E-03	6.18E-01	0.00E+00	-1.65E+00
Climate change – biogenic	kg CO₂e	1.21E-03	1.26E-04	5.58E-04	1.89E-03	1.34E-05	MND	MND	0.00E+00	3.71E-06	4.05E-05	0.00E+00	-4.68E-03
Climate change – LULUC	kg CO₂e	1.49E-04	6.79E-05	1.48E-03	1.70E-03	5.56E-06	MND	MND	0.00E+00	2.14E-06	2.00E-05	0.00E+00	-1.74E-03
Ozone depletion	kg CFC11e	5.14E-06	4.72E-08	1.95E-08	5.21E-06	4.34E-09	MND	MND	0.00E+00	1.39E-09	7.93E-09	0.00E+00	-4.55E-06
Acidification	mol H⁺e	4.48E-03	8.46E-04	7.26E-04	6.05E-03	7.76E-05	MND	MND	0.00E+00	2.50E-05	5.16E-03	0.00E+00	-5.56E-03
Eutrophication, aquatic freshwater ¹	kg Pe	8.46E-06	1.69E-06	7.94E-06	1.81E-05	1.50E-07	MND	MND	0.00E+00	5.23E-08	4.71E-07	0.00E+00	-1.58E-05
Eutrophication, aquatic marine	kg Ne	1.01E-03	2.53E-04	1.29E-04	1.39E-03	2.34E-05	MND	MND	0.00E+00	7.39E-06	3.01E-03	0.00E+00	-1.18E-03
Eutrophication, terrestrial	mol Ne	1.14E-02	2.79E-03	1.53E-03	1.57E-02	2.58E-04	MND	MND	0.00E+00	8.16E-05	2.92E-02	0.00E+00	-1.33E-02
Photochemical ozone formation	kg NMVOCe	3.94E-03	8.74E-04	3.27E-03	8.08E-03	8.30E-05	MND	MND	0.00E+00	2.56E-05	7.24E-03	0.00E+00	-6.84E-03
Abiotic depletion, minerals & metals ²	kg Sbe	5.87E-06	4.67E-06	7.16E-07	1.13E-05	3.15E-07	MND	MND	0.00E+00	1.51E-07	7.50E-07	0.00E+00	-1.36E-04
Abiotic depletion of fossil resources ²	MJ	6.91E+01	3.13E+00	5.32E+00	7.76E+01	2.87E-01	MND	MND	0.00E+00	9.24E-02	5.91E-01	0.00E+00	-6.24E+01
Water use ²	m ³ e deprived	4.30E-01	1.07E-02	7.07E-02	5.11E-01	1.07E-03	MND	MND	0.00E+00	3.28E-04	1.75E-02	0.00E+00	-4.05E-01

¹ The required characterisation method and data are in kg P-eq; to get PO₄e, multiply the result by 3.07.

FF-PIR WITH PLASTIC LAMINATE

ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Particulate matter	Incidence	3.70E-08	1.61E-08	3.92E-09	5.70E-08	1.67E-09	MND	MND	0.00E+00	4.68E-10	2.64E-07	0.00E+00	-7.42E-08
lonizing radiation, human health ³	kBq U235e	7.96E-01	1.37E-02	9.93E-02	9.09E-01	1.26E-03	MND	MND	0.00E+00	4.04E-04	2.11E-03	0.00E+00	-8.05E-01
Eco-toxicity (freshwater) ²	CTUe	1.04E+01	2.40E+00	2.76E+00	1.56E+01	2.20E-01	MND	MND	0.00E+00	7.22E-02	1.26E+01	0.00E+00	-1.43E+01
Human toxicity, cancer effects ²	CTUh	2.73E-10	6.62E-11	5.53E-11	3.95E-10	5.62E-12	MND	MND	0.00E+00	2.04E-12	4.14E-09	0.00E+00	-7.85E-10
Human toxicity, non-cancer effects ²	CTUh	1.65E-08	2.77E-09	1.41E-09	2.07E-08	2.60E-10	MND	MND	0.00E+00	8.28E-11	1.55E-08	0.00E+00	-2.90E-08
Land use related impacts/soil quality ²	-	1.90E-01	3.52E+00	1.54E-01	3.86E+00	4.34E-01	MND	MND	0.00E+00	1.03E-01	7.67E-01	0.00E+00	-3.15E+00

² EN 15804+A2 Disclaimer 2: "The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator."

³ EN 15804+A2 Disclaimer 1: "This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator."

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Renewable PER used as energy	MJ	1.57E+00	4.21E-02	1.29E+00	2.90E+00	3.62E-03	MND	MND	0.00E+00	1.31E-03	1.02E-02	0.00E+00	-2.68E+00
Renewable PER used as materials	MJ	5.20E-01	0.00E+00	0.00E+00	5.20E-01	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-4.57E-01
Total use of renewable PER	MJ	2.09E+00	4.21E-02	1.29E+00	3.42E+00	3.62E-03	MND	MND	0.00E+00	1.31E-03	1.02E-02	0.00E+00	-3.13E+00
Non-renewable PER used as energy	MJ	5.29E+01	3.13E+00	4.55E+00	6.06E+01	2.87E-01	MND	MND	0.00E+00	9.24E-02	5.91E-01	0.00E+00	-4.90E+01
Non-renewable PER used as materials	MJ	1.85E+01	0.00E+00	7.65E-01	1.93E+01	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-1.55E+01
Total use of non-renewable PER	MJ	7.14E+01	3.13E+00	5.32E+00	7.99E+01	2.87E-01	MND	MND	0.00E+00	9.24E-02	5.91E-01	0.00E+00	-6.45E+01
Use of secondary materials	kg	8.48E-04	0.00E+00	2.50E-04	1.10E-03	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.45E-02
Use of renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of non-renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of net fresh water	m ³	1.42E+01	5.85E-04	1.45E-03	1.42E+01	5.98E-05	MND	MND	0.00E+00	1.75E-05	5.65E-04	0.00E+00	-1.25E+01

PER abbreviation stands for primary energy resources.

FF-PIR WITH PLASTIC LAMINATE

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Hazardous waste	kg	1.02E-02	3.11E-03	1.12E-02	2.45E-02	2.79E-04	MND	MND	0.00E+00	9.62E-05	0.00E+00	0.00E+00	-4.43E-02
Non-hazardous waste	kg	2.43E-01	2.69E-01	2.91E-01	8.03E-01	3.09E-02	MND	MND	0.00E+00	7.99E-03	0.00E+00	0.00E+00	-7.26E-01
Radioactive waste	kg	3.20E-04	2.14E-05	4.28E-05	3.84E-04	1.97E-06	MND	MND	0.00E+00	6.32E-07	0.00E+00	0.00E+00	-3.41E-04

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Components for reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	9.51E-01	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

KEY INFORMATION TABLE (RTS) – KEY INFORMATION PER KG OF PRODUCT

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Climate change – total	kg CO₂e	1.82E+00	2.05E-01	1.79E-01	2.20E+00	1.83E-02	MND	MND	0.00E+00	6.06E-03	6.18E-01	0.00E+00	-1.65E+00
Abiotic depletion. minerals & metals ²	kg Sbe	5.87E-06	4.67E-06	7.16E-07	1.13E-05	3.15E-07	MND	MND	0.00E+00	1.51E-07	7.50E-07	0.00E+00	-1.36E-04
Abiotic depletion of fossil resources ²	MJ	6.91E+01	3.13E+00	5.32E+00	7.76E+01	2.87E-01	MND	MND	0.00E+00	9.24E-02	5.91E-01	0.00E+00	-6.24E+01
Water use ²	m ³ e deprived	4.30E-01	1.07E-02	7.07E-02	5.11E-01	1.07E-03	MND	MND	0.00E+00	3.28E-04	1.75E-02	0.00E+00	-4.05E-01
Use of secondary materials	kg	8.48E-04	0.00E+00	2.50E-04	1.10E-03	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.45E-02
Biogenic carbon content in product	kg C	N/A	N/A	0.00E+00	0.00E+00	N/A	MND	MND	N/A	N/A	N/A	N/A	N/A
Biogenic carbon content in packaging	kg C	N/A	N/A	0.00E+00	0.00E+00	N/A	MND	MND	N/A	N/A	N/A	N/A	N/A

FF-PIR WITH FIRE RESISTANT

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Climate change – total	kg CO ₂ e	1.87E+00	2.80E-01	1.79E-01	2.33E+00	1.83E-02	MND	MND	0.00E+00	6.12E-03	6.24E-01	0.00E+00	-1.66E+00
Climate change – fossil	kg CO₂e	1.86E+00	2.80E-01	1.77E-01	2.32E+00	1.85E-02	MND	MND	0.00E+00	6.12E-03	6.24E-01	0.00E+00	-1.66E+00
Climate change – biogenic	kg CO₂e	9.45E-03	1.63E-04	5.58E-04	1.02E-02	1.34E-05	MND	MND	0.00E+00	3.75E-06	4.09E-05	0.00E+00	-4.72E-03
Climate change – LULUC	kg CO₂e	4.67E-04	9.55E-05	1.48E-03	2.04E-03	5.56E-06	MND	MND	0.00E+00	2.16E-06	2.02E-05	0.00E+00	-1.76E-03
Ozone depletion	kg CFC11e	4.23E-06	6.41E-08	1.95E-08	4.31E-06	4.34E-09	MND	MND	0.00E+00	1.40E-09	8.01E-09	0.00E+00	-4.59E-06
Acidification	mol H⁺e	7.05E-03	1.15E-03	7.26E-04	8.93E-03	7.76E-05	MND	MND	0.00E+00	2.52E-05	5.21E-03	0.00E+00	-5.62E-03
Eutrophication, aquatic freshwater ¹	kg Pe	2.37E-05	2.33E-06	7.94E-06	3.40E-05	1.50E-07	MND	MND	0.00E+00	5.28E-08	4.75E-07	0.00E+00	-1.59E-05
Eutrophication, aquatic marine	kg Ne	1.49E-03	3.43E-04	1.29E-04	1.96E-03	2.34E-05	MND	MND	0.00E+00	7.46E-06	3.04E-03	0.00E+00	-1.19E-03
Eutrophication, terrestrial	mol Ne	1.66E-02	3.79E-03	1.53E-03	2.19E-02	2.58E-04	MND	MND	0.00E+00	8.24E-05	2.95E-02	0.00E+00	-1.35E-02
Photochemical ozone formation	kg NMVOCe	5.00E-03	1.18E-03	2.77E-03	8.95E-03	8.30E-05	MND	MND	0.00E+00	2.59E-05	7.31E-03	0.00E+00	-6.90E-03
Abiotic depletion, minerals & metals ²	kg Sbe	1.06E-04	6.86E-06	7.16E-07	1.14E-04	3.15E-07	MND	MND	0.00E+00	1.53E-07	7.57E-07	0.00E+00	-1.38E-04
Abiotic depletion of fossil resources ²	MJ	6.05E+01	4.25E+00	5.32E+00	7.01E+01	2.87E-01	MND	MND	0.00E+00	9.33E-02	5.96E-01	0.00E+00	-6.30E+01
Water use ²	m ³ e deprived	3.41E-01	1.42E-02	7.07E-02	4.26E-01	1.07E-03	MND	MND	0.00E+00	3.31E-04	1.77E-02	0.00E+00	-4.09E-01

¹ The required characterisation method and data are in kg P-eq; to get PO₄e, multiply the result by 3.07.

FF-PIR WITH FIRE RESISTANT

ADDITIONAL ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Particulate matter	Incidence	5.04E-08	2.10E-08	3.92E-09	7.53E-08	1.67E-09	MND	MND	0.00E+00	4.72E-10	2.67E-07	0.00E+00	-7.49E-08
lonizing radiation, human health ³	kBq U235e	6.78E-01	1.86E-02	9.93E-02	7.96E-01	1.26E-03	MND	MND	0.00E+00	4.08E-04	2.13E-03	0.00E+00	-8.13E-01
Eco-toxicity (freshwater) ²	CTUe	1.20E+01	3.28E+00	2.76E+00	1.80E+01	2.20E-01	MND	MND	0.00E+00	7.29E-02	1.27E+01	0.00E+00	-1.44E+01
Human toxicity, cancer effects ²	CTUh	6.96E-10	9.22E-11	5.53E-11	8.44E-10	5.62E-12	MND	MND	0.00E+00	2.06E-12	4.18E-09	0.00E+00	-7.93E-10
Human toxicity, non-cancer effects ²	CTUh	4.33E-08	3.75E-09	1.41E-09	4.85E-08	2.60E-10	MND	MND	0.00E+00	8.36E-11	1.56E-08	0.00E+00	-2.92E-08
Land use related impacts/soil quality ²	-	6.72E-01	4.29E+00	1.54E-01	5.12E+00	4.34E-01	MND	MND	0.00E+00	1.04E-01	7.75E-01	0.00E+00	-3.18E+00

² EN 15804+A2 Disclaimer 2: "The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator."

³ EN 15804+A2 Disclaimer 1: "This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator."

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Renewable PER used as energy	MJ	1.78E+00	5.84E-02	1.29E+00	3.13E+00	3.62E-03	MND	MND	0.00E+00	1.33E-03	1.03E-02	0.00E+00	-2.70E+00
Renewable PER used as materials	MJ	4.24E-01	0.00E+00	0.00E+00	4.24E-01	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-4.62E-01
Total use of renewable PER	MJ	2.21E+00	5.84E-02	1.29E+00	3.56E+00	3.62E-03	MND	MND	0.00E+00	1.33E-03	1.03E-02	0.00E+00	-3.16E+00
Non-renewable PER used as energy	MJ	4.95E+01	4.25E+00	4.55E+00	5.83E+01	2.87E-01	MND	MND	0.00E+00	9.33E-02	5.96E-01	0.00E+00	-4.94E+01
Non-renewable PER used as materials	MJ	1.29E+01	0.00E+00	7.65E-01	1.37E+01	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-1.56E+01
Total use of non-renewable PER	MJ	6.24E+01	4.25E+00	5.32E+00	7.20E+01	2.87E-01	MND	MND	0.00E+00	9.33E-02	5.96E-01	0.00E+00	-6.51E+01
Use of secondary materials	kg	2.15E-03	0.00E+00	2.50E-04	2.40E-03	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.47E-02
Use of renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of non-renewable secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of net fresh water	m ³	1.16E+01	7.68E-04	1.45E-03	1.16E+01	5.98E-05	MND	MND	0.00E+00	1.77E-05	5.70E-04	0.00E+00	-1.26E+01

PER abbreviation stands for primary energy resources.

FF-PIR WITH FIRE RESISTANT

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Hazardous waste	kg	2.24E-02	4.27E-03	1.12E-02	3.79E-02	2.79E-04	MND	MND	0.00E+00	9.71E-05	0.00E+00	0.00E+00	-4.47E-02
Non-hazardous waste	kg	9.87E-01	3.38E-01	2.91E-01	1.62E+00	3.09E-02	MND	MND	0.00E+00	8.07E-03	0.00E+00	0.00E+00	-7.33E-01
Radioactive waste	kg	2.85E-04	2.92E-05	4.28E-05	3.57E-04	1.97E-06	MND	MND	0.00E+00	6.38E-07	0.00E+00	0.00E+00	-3.44E-04

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Components for reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	9.60E-01	0.00E+00	0.00E+00
Materials for energy recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported energy	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

KEY INFORMATION TABLE (RTS) – KEY INFORMATION PER KG OF PRODUCT

	· · ·	<u>´</u>											
Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	C3	C4	D
Climate change – total	kg CO₂e	1.87E+00	2.80E-01	1.79E-01	2.33E+00	1.83E-02	MND	MND	0.00E+00	6.12E-03	6.24E-01	0.00E+00	-1.66E+00
Abiotic depletion. minerals & metals ²	kg Sbe	1.06E-04	6.86E-06	7.16E-07	1.14E-04	3.15E-07	MND	MND	0.00E+00	1.53E-07	7.57E-07	0.00E+00	-1.38E-04
Abiotic depletion of fossil resources ²	MJ	6.05E+01	4.25E+00	5.32E+00	7.01E+01	2.87E-01	MND	MND	0.00E+00	9.33E-02	5.96E-01	0.00E+00	-6.30E+01
Water use ²	m ³ e deprived	3.41E-01	1.42E-02	7.07E-02	4.26E-01	1.07E-03	MND	MND	0.00E+00	3.31E-04	1.77E-02	0.00E+00	-4.09E-01
Use of secondary materials	kg	2.15E-03	0.00E+00	2.50E-04	2.40E-03	0.00E+00	MND	MND	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-2.47E-02
Biogenic carbon content in product	kg C	N/A	N/A	0.00E+00	0.00E+00	N/A	MND	MND	N/A	N/A	N/A	N/A	N/A
Biogenic carbon content in packaging	kg C	N/A	N/A	0.00E+00	0.00E+00	N/A	MND	MND	N/A	N/A	N/A	N/A	N/A

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

Scenario parameter	Value
Electricity data source and quality	Electricity, high voltage, production mix Ecoinvent v3.6, Finland, 2019
Electricity CO2e / kWh	0.0579 kg CO2e / kWh
District heating data source and quality	Heat and power co-generation, oil Ecoinvent v3.6, Finland, 2019
District heating CO2e / kWh	0.0470 kg CO2e / kWh

Transport scenario documentation

Scenario parameter	Value
A4 specific transport CO2e emissions, kg CO2e / tkm	0.0901
A4 average transport distance, km	200

End of life scenario documentation*

Scenario parameter	Value
Collection process – kg collected separately	0.95 – 0.96
Collection process – kg collected with mixed waste	0
Recovery process – kg for re-use	0
Recovery process – kg for recycling	0.95 – 0.96
Recovery process – kg for energy recovery	0
Disposal (total) – kg for final deposition	0
Scenario assumptions for transportation	End-of-life product is transported 50 km with an average lorry

* The values are based on the manufacturer's information regarding the end-of-life treatment of the product.

BIBLIOGRAPHY

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations. Principles and procedures.

ISO 14040:2006 Environmental management. Life cycle assessment. Principles and frameworks.

ISO 14044:2006 Environmental management. Life cycle assessment. Requirements and guidelines.

ISO 21930:2017 Sustainability inbuilding construction -Environmental declaration of building products

EN 15804:2012+A2:2019 Sustainability in construction works -Environmental product declarations - Core rules for the product category of construction products.

RTS PCR 26.8.2020 RTS PCR protocol: EPDs published by the Building Information Foundation RTS sr. (English version)

Ecoinvent database v3.6

Plastics Europe database, 2012

PU Europe database, 2014

FF-PIR LCA Report 16.06.2021

ANNEX-1: ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

FF-PIR WITH ALUMINIUM LAMINATE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Global warming potential	kg CO ₂ e	2.73E+00	2.06E-01	1.72E-01	3.11E+00	1.83E-02	MND	MND	0.00E+00	6.02E-03	5.67E-01	0.00E+00	-2.10E+00
Depletion of stratospheric ozone	kg CFC11e	5.65E-08	3.81E-08	2.58E-08	1.20E-07	3.45E-09	MND	MND	0.00E+00	1.11E-09	6.47E-09	0.00E+00	-6.11E-08
Acidification	kg SO ₂ e	7.94E-03	4.19E-04	6.03E-04	8.96E-03	3.76E-05	MND	MND	0.00E+00	1.24E-05	4.88E-03	0.00E+00	-5.86E-03
Eutrophication	kg (PO ₄) ³⁻ e	1.86E-03	8.56E-05	2.41E-04	2.19E-03	7.59E-06	MND	MND	0.00E+00	2.57E-06	1.96E-02	0.00E+00	-1.09E-03
Photochemical ozone formation	kg C ₂ H ₄ e	1.26E-03	2.72E-05	4.17E-05	1.33E-03	2.38E-06	MND	MND	0.00E+00	8.00E-07	2.26E-04	0.00E+00	-1.08E-03
Abiotic depletion of non-fossil resources	kg Sbe	3.09E-04	4.79E-06	7.16E-07	3.15E-04	3.15E-07	MND	MND	0.00E+00	1.52E-07	7.52E-07	0.00E+00	-1.37E-04
Abiotic depletion of fossil resources	MJ	6.92E+01	3.17E+00	5.32E+00	7.77E+01	2.87E-01	MND	MND	0.00E+00	9.26E-02	5.92E-01	0.00E+00	-6.25E+01

FF-PIR WITH PLASTIC LAMINATE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Global warming potential	kg CO ₂ e	2.33E+00	2.03E-01	1.72E-01	2.71E+00	1.83E-02	MND	MND	0.00E+00	6.01E-03	5.66E-01	0.00E+00	-2.10E+00
Depletion of stratospheric ozone	kg CFC11e	2.99E-08	3.75E-08	2.58E-08	9.32E-08	3.45E-09	MND	MND	0.00E+00	1.11E-09	6.46E-09	0.00E+00	-6.10E-08
Acidification	kg SO₂e	5.46E-03	4.13E-04	6.03E-04	6.48E-03	3.76E-05	MND	MND	0.00E+00	1.23E-05	4.87E-03	0.00E+00	-5.85E-03
Eutrophication	kg (PO₄) ³ -e	8.86E-04	8.42E-05	2.41E-04	1.21E-03	7.59E-06	MND	MND	0.00E+00	2.57E-06	1.96E-02	0.00E+00	-1.09E-03
Photochemical ozone formation	kg C ₂ H ₄ e	1.18E-03	2.67E-05	4.17E-05	1.25E-03	2.38E-06	MND	MND	0.00E+00	7.98E-07	2.25E-04	0.00E+00	-1.07E-03
Abiotic depletion of non-fossil resources	kg Sbe	5.87E-06	4.67E-06	7.16E-07	1.13E-05	3.15E-07	MND	MND	0.00E+00	1.51E-07	7.50E-07	0.00E+00	-1.36E-04
Abiotic depletion of fossil resources	MJ	6.91E+01	3.13E+00	5.32E+00	7.76E+01	2.87E-01	MND	MND	0.00E+00	9.24E-02	5.91E-01	0.00E+00	-6.24E+01

FF-PIR WITH FIRE RESISTANT

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Global warming potential	kg CO ₂ e	2.27E+00	2.77E-01	1.72E-01	2.72E+00	1.83E-02	MND	MND	0.00E+00	6.06E-03	5.71E-01	0.00E+00	-2.12E+00
Depletion of stratospheric ozone	kg CFC11e	6.42E-08	5.10E-08	2.58E-08	1.41E-07	3.45E-09	MND	MND	0.00E+00	1.12E-09	6.52E-09	0.00E+00	-6.15E-08
Acidification	kg SO ₂ e	7.23E-03	5.63E-04	6.03E-04	8.40E-03	3.76E-05	MND	MND	0.00E+00	1.25E-05	4.92E-03	0.00E+00	-5.90E-03
Eutrophication	kg (PO ₄) ³⁻ e	1.43E-03	1.15E-04	2.41E-04	1.79E-03	7.59E-06	MND	MND	0.00E+00	2.59E-06	1.98E-02	0.00E+00	-1.10E-03
Photochemical ozone formation	kg C ₂ H ₄ e	1.01E-03	3.67E-05	4.17E-05	1.09E-03	2.38E-06	MND	MND	0.00E+00	8.06E-07	2.28E-04	0.00E+00	-1.08E-03
Abiotic depletion of non-fossil resources	kg Sbe	1.06E-04	6.86E-06	7.16E-07	1.14E-04	3.15E-07	MND	MND	0.00E+00	1.53E-07	7.57E-07	0.00E+00	-1.38E-04
Abiotic depletion of fossil resources	MJ	6.05E+01	4.25E+00	5.32E+00	7.01E+01	2.87E-01	MND	MND	0.00E+00	9.33E-02	5.96E-01	0.00E+00	-6.30E+01

ANNEX-2: ENVIRONMENTAL IMPACTS - TRACI 2.1

FF-PIR WITH ALUMINIUM LAMINATE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Global warming potential	kg CO ₂ e	2.19E+00	2.06E-01	1.73E-01	2.57E+00	1.83E-02	MND	MND	0.00E+00	6.01E-03	5.70E-01	0.00E+00	-1.60E+00
Ozone depletion	kg CFC11e	6.54E-08	5.07E-08	3.15E-08	1.48E-07	4.60E-09	MND	MND	0.00E+00	1.47E-09	8.41E-09	0.00E+00	-6.86E-08
Acidification	kg SO₂e	6.60E-03	7.47E-04	6.06E-04	7.95E-03	6.76E-05	MND	MND	0.00E+00	2.17E-05	6.13E-03	0.00E+00	-4.73E-03
Eutrophication	kg Ne	4.61E-04	1.05E-04	7.73E-05	6.43E-04	9.50E-06	MND	MND	0.00E+00	3.07E-06	6.90E-04	0.00E+00	-3.37E-04
Photochemical smog formation	kg O₃e	9.43E-02	1.63E-02	7.88E-03	1.18E-01	1.48E-03	MND	MND	0.00E+00	4.69E-04	1.71E-01	0.00E+00	-7.46E-02
Depletion of non-renewable energy	MJ	6.65E+00	4.54E-01	2.77E-01	7.38E+00	4.11E-02	MND	MND	0.00E+00	1.32E-02	8.32E-02	0.00E+00	-5.92E+00

FF-PIR WITH PLASTIC LAMINATE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Global warming potential	kg CO ₂ e	1.76E+00	2.02E-01	1.73E-01	2.14E+00	1.83E-02	MND	MND	0.00E+00	5.99E-03	5.69E-01	0.00E+00	-1.60E+00
Ozone depletion	kg CFC11e	3.14E-08	5.00E-08	3.15E-08	1.13E-07	4.60E-09	MND	MND	0.00E+00	1.47E-09	8.40E-09	0.00E+00	-6.85E-08
Acidification	kg SO ₂ e	3.83E-03	7.36E-04	6.06E-04	5.17E-03	6.76E-05	MND	MND	0.00E+00	2.17E-05	6.11E-03	0.00E+00	-4.72E-03
Eutrophication	kg Ne	2.09E-04	1.04E-04	7.73E-05	3.90E-04	9.50E-06	MND	MND	0.00E+00	3.06E-06	6.88E-04	0.00E+00	-3.37E-04
Photochemical smog formation	kg O₃e	6.40E-02	1.60E-02	7.88E-03	8.79E-02	1.48E-03	MND	MND	0.00E+00	4.68E-04	1.70E-01	0.00E+00	-7.45E-02
Depletion of non-renewable energy	MJ	7.11E+00	4.47E-01	2.77E-01	7.83E+00	4.11E-02	MND	MND	0.00E+00	1.32E-02	8.30E-02	0.00E+00	-5.91E+00

FF-PIR WITH FIRE RESISTANT

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1-B7	C1	C2	С3	C4	D
Global warming potential	kg CO ₂ e	1.80E+00	2.77E-01	1.73E-01	2.25E+00	1.83E-02	MND	MND	0.00E+00	6.05E-03	5.74E-01	0.00E+00	-1.62E+00
Ozone depletion	kg CFC11e	7.82E-08	6.80E-08	3.15E-08	1.78E-07	4.60E-09	MND	MND	0.00E+00	1.49E-09	8.48E-09	0.00E+00	-6.91E-08
Acidification	kg SO ₂ e	5.96E-03	1.00E-03	6.06E-04	7.57E-03	6.76E-05	MND	MND	0.00E+00	2.19E-05	6.17E-03	0.00E+00	-4.76E-03
Eutrophication	kg Ne	4.01E-04	1.41E-04	7.73E-05	6.19E-04	9.50E-06	MND	MND	0.00E+00	3.09E-06	6.95E-04	0.00E+00	-3.40E-04
Photochemical smog formation	kg O₃e	9.28E-02	2.18E-02	7.88E-03	1.22E-01	1.48E-03	MND	MND	0.00E+00	4.73E-04	1.72E-01	0.00E+00	-7.52E-02
Depletion of non-renewable energy	MJ	6.13E+00	6.09E-01	2.77E-01	7.02E+00	4.11E-02	MND	MND	0.00E+00	1.33E-02	8.38E-02	0.00E+00	-5.96E+00

ABOUT THE MANUFACTURER

Over nearly forty-year-long history, Finnfoam has become one of the leading manufacturers of plastic-based thermal insulation solutions. The roots of Finnfoam's thermal insulation competence are embedded into the frozen Finnish soil. Today, the group is known for quality, product development, and reliability. Finnfoam's product range includes XPS, EPS and PIR thermal insulation and the Tulppa - wet room boards. The entire Finnfoam (XPS) thermal insulation product range is suitable for use as frost insulation and for insulating floors, ceilings, and walls, as well as for various types of supplementary thermal insulation. As frost and floor insulation, Finnfoam is highly resistant to moisture, freezing, and load. FF-EPS is best suited for use as thermal insulation for walls and ceilings, where it provides a safe and highly cost-effective solution. It can also be used in floors that are not subjected to significant loads. The applications of FF-PIR polyurethane insulation products have a very high thermal insulation capacity, which allows for lower structural thickness.

EPD AUTHOR AND CONTRIBUTORS

Manufacturer	Finnfoam Oy
EPD author	One ClickLCA Ltd, <u>www.oneclicklca.com</u>
EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
EPD program	RTS EPD
Background data	Ecoinvent 3.6 (cut-off), Plastics Europe 2012, PU Europe 2014
LCA software	One Click LCA Pre-Verified Generator for Plastic Products