Approval body for construction products and types of construction **Bautechnisches Prüfamt** An institution established by the Federal and Laender Governments # European Technical Assessment # ETA-14/0130 of 17 June 2014 ## **General Part** Technical Assessment Body issuing the European Technical Assessment Trade name of the construction product Product family to which the construction product belongs Manufacturer Manufacturing plant This European Technical Assessment contains This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik EJOT H3 Nailed-in plastic anchor with plastic pin for fixing of external thermal insulation composite systems with rendering in concrete and masonry. EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe DEUTSCHLAND EJOT Herstellwerke 1, 2, 3, 4 12 pages including 8 annexes which form an integral part of this assessment Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, Edition February 2011, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011. # European Technical Assessment ETA-14/0130 Page 2 of 12 | 17 June 2014 The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such. This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011. European Technical Assessment ETA-14/0130 Page 3 of 12 | 17 June 2014 #### Specific part ### 1 Technical description of the product The nailed-in anchor EJOT H3 consists of a plastic part made of polyethylene and an accompanying specific nail of polyamide, reinforced with glass fibres. The anchor types EJOT H3 may in addition be combined with the insulation discs SBL 140 plus and VT 90. The product description is given in Annex A. # 2 Specification of the intended use in accordance with the applicable European Assessment Document The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B. The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works. ### 3 Performance of the product and references to the methods used for its assessment # 3.1 Mechanical resistance and stability (BWR 1) The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use. ### 3.2 Safety in case of fire (BWR 2) Not applicable. # 3.3 Hygiene, health and the environment (BWR 3) Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply. #### 3.4 Safety in use (BWR 4) | Essential characteristic | Performance | |-----------------------------|---------------| | Characteristic resistance | See Annex C 1 | | Edge distances and spacing | See Annex B 2 | | Point thermal transmittance | See Annex C 2 | | Plate stiffness | See Annex C 2 | | Displacements | See Annex C 2 | Z28461.14 8.06.04-57/14 # European Technical Assessment ETA-14/0130 Page 4 of 12 | 17 June 2014 3.5 Protection against noise (BWR 5) Not applicable. 3.6 Energy economy and heat retention (BWR 6) Not applicable. 3.7 Sustainable use of natural resources (BWR 7) The sustainable use of natural resources was not investigated. 3.8 General aspects The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account. 4 Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base According to Decision 97/463/EC of the Commission of 27 June 1997 (Official Journal of the European Communities L 198 of 25.07.1997, p. 31–32) the system of assessment and verification of constancy of performance (AVCP) (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies. | Product | Intended use | Level or class | System | |---|--|----------------|--------| | Plastic anchors for use in concrete and masonry | For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems | _ | 2+ | Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik. Issued in Berlin on 17 June 2014 by Deutsches Institut für Bautechnik Dr. Karsten Kathage Vice-President beglaubigt: Aksünger Z26461.14 English translation prepared by DIBt Legend: h_D = thickness of insulation material h_{ef} = effective anchorage depth h = thickness of member (wall) h₁ = depth of drilled hole to deepest point t_{tol} = thickness of equalizing layer or non-load-bearing coating | EJOT H3 | | |---|-----------| | Product description Installed condition | Annex A 1 | English translation prepared by DIBt # **EJOT H3** Marking: Identifying mark (EJOT) Anchor type (H3) Length of anchor (e.g. 215) accompanying specific nail | Table A1: Di | mensions | | | | | | | |--------------|----------|------------------|-----------------|--|----------------|----------------|----------------| | Anchor | | Anchor sleeve | | Spec | Specific nail | | | | Туре | Colour | d _{nom} | h _{ef} | min L _a
max L _a | d _n | C ₁ | C ₂ | | | | [mm] | [mm] | [mm] | [mm] | [mm] | [mm] | | EJOT H3 | nature | 8 | 25 | 75
235 | 5 | 12 | 18 | Determination of maximum thickness of insulation h_{Dmax} [mm] for EJOT H3: $$h_{Dmax} = L_a - t_{tol} - h_{ef}$$ (L_a = e.g. 75; t_{tol} = 10) e.g. $h_{Dmax} = 75 - 10 - 25$ = 40 h_{Dmax.} Product description Marking and dimensions of the anchor sleeve Specific nail Annex A 2 | Table A2: Materials | | | |---------------------|---------------------|--| | Name | Materials | | | Anchor sleeve | Polyethylene, PE-HD | | | Specific nail | Polyamide, PA GF 50 | | | SBL 140 plus | | | |--------------|------|--------| | cole | our | nature | | d_d | [mm] | 20,0 | | d [mm] | | 2,0 | | Material | | 1) 2) | VT 90 | VT 90 | | | |---------------------|--------|--| | colour | nature | | | d _d [mm] | 17,5 | | | d [mm] | 1,2 | | | Material | 1) 2) | | ¹⁾ Polyamide, PA 6 ²⁾ Polyamide, PA GF 50 | EJOT H3 | | |---|-----------| | Product description Materials, Slip on plates combined with EJOT H3 | Annex A 3 | English translation prepared by DIBt # Specifications of intended use #### Anchorages subject to: • The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system. #### Base materials: - Normal weight concrete (use category A) according to Annex C1. - Solid masonry (use category B), according to Annex C1. - · Hollow or perforated masonry (use category C), according to Annex C1. - For other base materials of the use categories A, B, or C the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D. ### Temperature Range: • 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C) ### Design: - The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work. - Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings. - · Fasteners are only to be used for multiple fixings of thermal insulation composite systems. ### Installation: - Hole drilling by the drill modes according to Annex C1. - Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site. - Installation temperature from 0°C to +40°C - Exposure to UV due to solar radiation of the anchor not protected by rendering ≤ 6 weeks | EJOT H3 | | |----------------|-----------| | | | | | . 5. | | Intended use | Annex B 1 | | | | | Specifications | | | | | | į | | | Table B1: Installation parameters | | | |--|-------------------------|---------| | Anchor type | | EJOT H3 | | Drill hole diameter | d ₀ [mm] = | 8 | | Cutting diameter of drill bit | d _{cut} [mm] ≤ | 8,45 | | Depth of drilled hole to deepest point | h₁ [mm] ≥ | 35 | | Effective anchorage depth | h _{ef} [mm] ≥ | 25 | | Table B2: Anchor distances an dimensions of members | | | | |---|-------------------------|---------|--| | Anchor type | | EJOT H3 | | | Minimum allowable spacing | s _{min} = [mm] | 100 | | | Minimum allowable edge distance | c _{min} = [mm] | 100 | | | Thickness of member | h ≥ [mm] | 100 | | # Scheme of distances and spacing | EJOT H3 | | |--|-----------| | Intended use Installation parameters, Edge distances and spacing | Annex B 2 | | Anchor type | | | | EJOT H | | |---|---|---|--|------------------|-------------------| | Base materials | Bulk
density
class
p
[kg/dm³] | minimum compressive strength f _b [N/mm²] | General remarks | Drill
methode | N _{Rk} | | Concrete C20/25 | | | EN 206-1:2000 | hammer | 0,6 | | Concrete C50/60 | | | EN 206-1:2000 | hammer | 0,6 | | Clay bricks, Mz
e.g. according to
DIN 105-100:2012-01 /
EN 771-1:2011 | ≥1,8 | 12 | Cross section reduced up
to 15 % by perforation
vertically to the resting area | hammer | 0,6 | | Sand-lime solid bricks, KS
e.g. according to
DIN V 106:2005-10 /
EN 771-2:2011 | ≥ 1,8 | 12 | Cross section reduced up
to 15 % by perforation
vertically to the resting area | hammer | 0,6 | | Vertically perforated solid
blocks, HLz
e.g. according to
DIN 105-100:2012-01 /
EN 771-1:2011 | ≥ 0,8 | 12 | Cross section reduced by more than 15% and less than 50% by perforation vertically to the resting area | rotary | 0,5 1) | | Vertically perforated solid
blocks, HLz
e.g. according to
DIN 105-100:2012-01 /
EN 771-1:2011 | ≥ 1,2 | 20 | Cross section reduced by more than 15% and less than 50% by perforation vertically to the resting area | rotary | 0,6 ²⁾ | | Sand-lime perforated
bricks, KSL
e.g. according to
DIN V 106:2005-10 /
EN 771-2:2011 | ≥ 1,6 | 12 | Cross section reduced by more than 15 % by perforation vertically to the resting area | rotary | 0,6 ³⁾ | ¹⁾ The value applies only for outer web thickness ≥ 11 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests. | EJOT H3 | | |--|-----------| | Performances Characteristic resistance | Annex C 1 | ⁾ The value applies only for outer web thickness ≥ 14 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests. The value applies only for outer web thickness ≥ 20 mm; otherwise the characteristic resistance shall be determined by job site pull-out tests. # Page 12 of European Technical Assessment ETA-14/0130 of 17 June 2014 English translation prepared by DIBt | Table C2: Point thermal transmittance according EOTA Technical Report TR 025:2007-06 | | | | | |--|------------------------|-----------------------------|--|--| | | insulation thickness | point thermal transmittance | | | | anchor type | h _d
[mm] | χ
[W/K] | | | | EJOT H3 | 40 - 200 | 0,000 | | | | Table C3: Plate stiffne | ess according EOTA Technic | cal Report TR 025:2007-06 | | |-------------------------|------------------------------|---|------------------| | anchor type | diameter of the anchor plate | load resistance
oft the anchor plate | plate stiffness | | | [mm] | [kN] | [k N /mm] | | EJOT H3 | 60 | 1,25 | 0,6 | | Base materials | Bulk density
Class | Minimum Compressive strength | Tension load | Displacements | |--|--|------------------------------|--------------|-------------------------------| | | ρ
[kg/dm³] | f _b
[N/mm²] | N
[kN] | δ _m (N)
[kN/mm] | | Concrete C20/25 | | | 0,2 | 0,55 | | Concrete C50/60 | | | 0,2 | 0,34 | | Clay bricks, Mz | | | | | | e.g. according to
DIN 105-100:2012-01 /
EN 771-1:2011 | ≥ 1,8 | 12 | 0,2 | 0,31 | | Sand-lime solid bricks, KS | | | | | | e.g. according to DIN V 106:2005-10 / EN 771-2:2011 | ≥ 1,8 | 12 | 0,2 | 0,33 | | Vertically perforated solid
blocks, HLz
e.g. according to
DIN 105-100:2012-01 / | ≥ 0,8 | 12 | 0,16 | 0,25 | | EN 771-1:2011 | | | | | | Vertically perforated solid blocks, HLz | | | | | | e.g. according to
DIN 105-100:2012-01 /
EN 771-1:2011 | ≥ 1,2 | 20 | 0,2 | 0,27 | | Sand-lime perforated bricks,
KSL | | | | | | e.g. according to
DIN V 106:2005-10 /
EN 771-2:2011 | ≥ 1,6 | 12 | 0,2 | 0,24 | | EJOT H3 | | |---|-----------| | Performances Point thermal transmittance, plate stiffness and displacements | Annex C 2 |