

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-18/0642 of 8 October 2018

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ESSVE Injection system ONE or ONE ICE for Masonry

Metal Injection anchors for use in masonry

ESSVE Produkter AB Esbogatan 14 164 74 KISTA SCHWEDEN

ESSVE Plant No. 671

61 pages including 3 annexes which form an integral part of this assessment

EAD 330076-00-0604

European Technical Assessment ETA-18/0642

Page 2 of 61 | 8 October 2018

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z61546.18 8.06.04-649/18

European Technical Assessment ETA-18/0642

Page 3 of 61 | 8 October 2018

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The ESSVE Injection System ONE or ONE ICE for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar ESSVE ONE or ESSVE ONE ICE, a perforated sleeve and an anchor rod with hexagon nut and washer. The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance	See Annexes C 1 to C 45
Displacements	See Annex C 5 to C 45

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330076-00-0604 the applicable European legal act is: [97/177/EC].

The system to be applied is: 1

Z61546.18 8.06.04-649/18

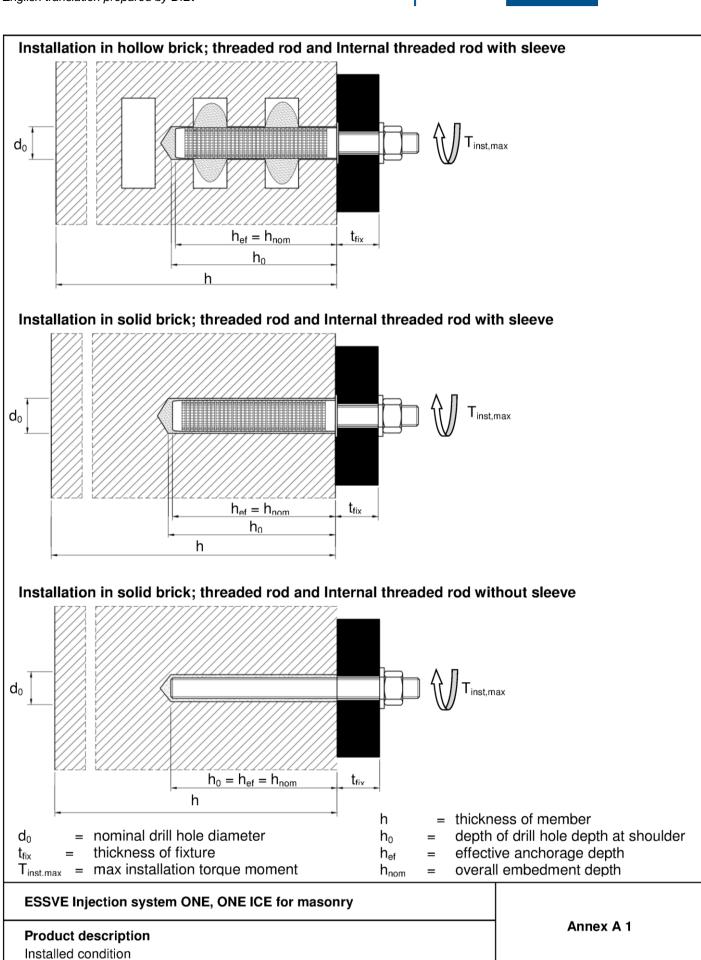
European Technical Assessment ETA-18/0642

Page 4 of 61 | 8 October 2018

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

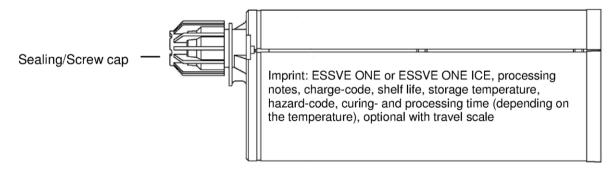
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 8 October 2018 by Deutsches Institut für Bautechnik

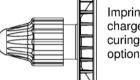
Dr.-Ing. Lars Eckfeldt p.p. Head of Department

beglaubigt: Baderschneider

Z61546.18 8.06.04-649/18


Cartridge: ESSVE ONE or ESSVE ONE ICE

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)

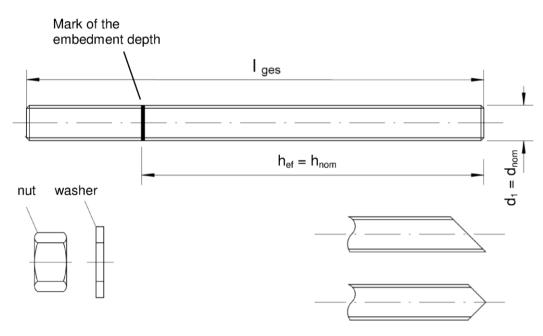

Imprint: ESSVE ONE or ESSVE ONE ICE processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), optional with travel scale

235 ml, 345 ml up to 360 ml and 825 ml cartridge (Type: "side-by-side")

165 ml and 300 ml cartridge (Type: "foil tube")

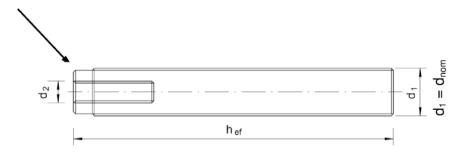
Imprint: ESSVE ONE or ESSVE ONE ICE processing notes, charge-code, shelf life, storage temperature, hazard-code, curing- and processing time (depending on the temperature), optional with travel scale

Static Mixer


14W

Product description Injection system Annex A 2

Threaded rod M8, M10, M12, M16



Commercial standard rod with:

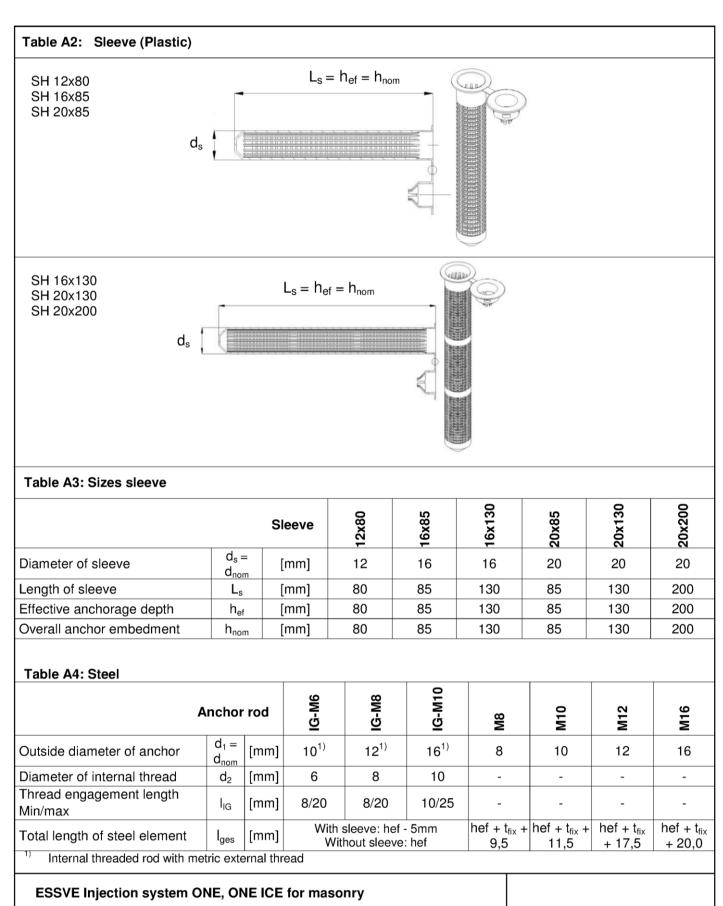
- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

Internal threaded rod IG-M6, IG-M8, IG-M10

Mark the producer

Marking: e.g. <

ESSVE Injection system ONE, ONE ICE for masonry	
Product description Anchor rods	Annex A 3



Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042:	Material					
not-dip galvanised ≥ 40 µm acc. to EN ISO 14						
Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 4.8, 5.6, 5.8, 8.8 acc. EN 1993-1-8:2005+AC:2009 A _s > 8% fracture elongation					
Hexagon nut, EN ISO 4032:2012	Steel acc. EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6, 4.8 rod) EN ISO 898-2:2012 Property class 5 (for class 5.6, 5.8 rod) EN ISO 898-2:2012 Property class 8 (for class 8.8 rod) EN ISO 898-2:2012					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised					
nternal threaded rod	Steel, zinc plated Property class 5.6, 5.8 and 8.8 EN ISO 898-1:2013					
Stainless steel						
Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2014, Property class 70 EN ISO 3506-1:2009 Property class 80 EN ISO 3506-1:2009					
Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2014, Property class 70 (for class 70 rod) EN ISO 3506-2:2009 Property class 80 (for class 80 rod) EN ISO 3506-2:2009					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2014					
nternal threaded rod	Stainless steel: 1.4401 / 1.4404 / 1.4571, EN 10088-1:2014 Property class 70 (for class 70 rod) EN ISO 3506-1:2009					
High corrosion resistant steel (HCR)						
Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2014, Property class 70 EN ISO 3506-1:2009 Property class 80 EN ISO 3506-1:2009					
Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565, EN 10088-1:2014, Property class 70 (for class 70 rod) EN ISO 3506-2:2009 Property class 80 (for class 80 rod) EN ISO 3506-2:2009					
Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2014					
nternal threaded rod	Stainless steel: 1.4529 / 1.4565, EN 10088-1:2014 Property class 70 (for class 70 rod) EN ISO 3506-1:2009					
Plastic sleeve						
Perforated sleeve Material: Polypropylene						

Product description

Sleeves

Z61022.18 8.06.04-649/18

Annex A 5

Specifications of intended use

Anchorages subject to:

Static and guasi-static loads

Base materials:

- Autoclaved Aerated Concrete (Use category d) according to Annex B2
- Solid brick masonry (Use category b), according to Annex B2.
- Hollow brick masonry (use category c), according to Annex B2 and B3
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to Technical Report TR 053 under consideration of the β-factor according to Annex C1, Table C1.

Note: The characteristic resistance for solid bricks and autoclaved aerated concrete are also valid for larger brick sizes and larger compressive strength of the masonry unit.

Temperature Range:

- T_a: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- T_b: 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)
- T_c: 40°C to +120°C (max. short term temperature +120°C and max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Use categories in respect of installation and use:

- Category d/d: Installation and use in dry masonry
- Category w/w: Installation and use in dry or wet masonry (incl. w/d installation in wet masonry and use in dry masonry)

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorages are designed in accordance with the Technical Report TR 054, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.
- N_{Rk,p} = N_{Rk,b} see Annex C4 to C45; N_{Rk,s} see Annex C2; N_{Rk,pb} see Technical Report TR 054
- V_{Rk,b} and V_{Rk,c} see Annex C4 to C45; V_{Rk,s} see Annex C2; V_{Rk,pb} see Technical Report TR 054
- For application with sleeve with drill bit size ≤ 15mm installed in joints not filled with mortar:
 - $\begin{array}{lll} \circ & N_{Rk,p,j} = 0.18 * N_{Rk,p} \text{ and } N_{Rk,b,j} = 0.18 * N_{Rk,b} \\ \circ & V_{Rk,c,j} = 0.15 * V_{Rk,c} \text{ and } V_{Rk,b,j} = 0.15 * V_{Rk,b} \end{array} \qquad \begin{array}{ll} (N_{Rk,p} = N_{Rk,b} \text{ see Annex C4 to C45}) \\ (V_{Rk,b} \text{ and } V_{Rk,c} \text{ see Annex C4 to C45}) \end{array}$
- Application without sleeve installed in joints not filled with mortar is not allowed.

Installation:

- Dry or wet structures.
- Anchor Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Fastening screws or threaded rods (incl. nut and washer) must comply with the appropriate material and property class of the Internal threaded rod.

ESSVE Injection system ONE, ONE ICE for masonry	
Intended Use Specifications	Annex B 1

Brick-No.	Brick type	Picture	Brick size length width height	Compressive strength	Bulk density	Sleeve - Anchor type	Annex
			[mm]	[N/mm ²]	[kg/dm ³]		
Auto	claved aerated	concrete units accor	ding EN 771	-4			
1	Autoclaved Aerated Concrete AAC6	I	499 240 249	6	0,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10	C4 - C5
Calc	ium silicate mas	onry units accordin	g EN 771-2				
2	Calcium silicate solid brick KS-NF		240 115 71	10 20 27	2,0	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C6 - C8
3	Calcium silicate hollow brick KSL-3DF		240 175 113	8 12 14	1,4	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C9 C1
4	Calcium silicate hollow brick KSL-12DF	and the second	498 175 238	10 12 16	1,4	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	
Clay	masonry units a	according EN 771-1					<u> </u>
5	Clay solid brick Mz – DF		240 115 55	10 20 28	1,6	M8/M10/M12/M16/IG-M6/IG-M8/IG-M10 SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C15 C17
6	Clay hollow brick Hlz-16DF		497 240 238	6 8 12 14	0,8	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10 SH 20x200 – M12/M16/IG-M8/IG-M10	C18 C20
7	Clay hollow brick Porotherm Homebric		500 200 299	4 6 10	0,7	SH 12x80 – M8 SH 16x85 – M8/M10/IG-M6 SH 16x130 – M8/M10/IG-M6 SH 20x85 – M12/M16/IG-M8/IG-M10 SH 20x130 – M12/M16/IG-M8/IG-M10	C21 C23
In	itended Use	roperties with corre			ements	Annex B 2	

Tal		rview brick types chor and Sleeves)		ties with corre	sponding	j fastening	elements	
Brick-No.	Brick type	Picture	Brick size length width height	Compressive strength	Bulk density	SI	eeve - Anchor type	Annex
			[mm]	[N/mm ²]	[kg/dm ³]			
Clay	masonry unit	s according EN 771	-1			01140.00	140	1
8	Clay hollow brick BGV Thermo		500 200 314	4 6 10	0,6	SH 16x130 SH 20x85	- M8 - M8/M10/IG-M6 I - M8/M10/IG-M6 - M12/M16/IG-M8/IG-M10 I - M12/M16/IG-M8/IG-M10	C24 - C26
9	Clay hollow brick Calibric R+		500 200 314	6 9 12	0,6	SH 16x130 SH 20x85	- M8 - M8/M10/IG-M6 - M8/M10/IG-M6 - M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C27- C29
10	Clay hollow brick Urbanbric		560 200 274	6 9 12	0,7	SH 16x130 SH 20x85	- M8 - M8/M10/IG-M6 I – M8/M10/IG-M6 - M12/M16/IG-M8/IG-M10 I – M12/M16/IG-M8/IG-M10	C30 - C32
11	Clay hollow brick Brique creuse C40		500 200 200	4 8 12	0,7	SH 16x130 SH 20x85	- M8 - M8/M10/IG-M6 - M8/M10/IG-M6 - M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C33 - C35
12	Clay hollow brick Blocchi Leggeri		250 120 250	4 6 8 12	0,6	SH 16x130 SH 20x85 - SH 20x130	- M8 - M8/M10/IG-M6 I - M8/M10/IG-M6 - M12/M16/IG-M8/IG-M10 I - M12/M16/IG-M8/IG-M10 I - M12/M16/IG-M8/IG-M10	C36 - C38
13	Clay hollow brick Doppio Uni		250 120 120	10 16 20 28	0,9	SH 16x130 SH 20x85 - SH 20x130	- M8 - M8/M10/IG-M6 I - M8/M10/IG-M6 - M12/M16/IG-M8/IG-M10 I - M12/M16/IG-M8/IG-M10 I - M12/M16/IG-M8/IG-M10	C39 - C41
Ligh		rete according EN 7	71-3					
14	Hollow light weight concrete Bloc creux B40		494 200 190	4	0,8	SH 16x130 SH 20x85	- M8 - M8/M10/IG-M6 - M8/M10/IG-M6 - M12/M16/IG-M8/IG-M10 - M12/M16/IG-M8/IG-M10	C42 - C43
15	Solid light weight concrete		300 123 248	2	0,6	M8/M10/M SH 12x80 - SH 16x85 - SH 16x130 SH 20x85 - SH 20x130	12/M16/IG-M6/IG-M8/IG-M10	C44 - C45
ESSVE Injection system ONE, ONE ICE for masonry Intended Use Brick types and properties with corresponding fastening elements							Annex B 3	
		d properties with co	orresponding	g fastening elem	ents		Aillex B 0	

Installation: Steel Brush RBT

Table B2: Installation parameters in autoclaved aerated concrete AAC and solid masonry (without sleeve)

Anchor size			M8 M10 IG-M6 M12 IG-M8 M16				IG-M10		
Nominal drill hole diameter	d ₀	[mm]	10	1	2	14		18	
Drill hole depth	h ₀	[mm]	80	9	0 100		00	100	
Effective anchorage depth	h _{ef}	[mm]	80	9	0	10	00	100	
Minimum wall thickness	h _{min}	[mm]	h _{ef} + 30						
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	7	14	9	18	12
Diameter of steel brush			RBT10	RB ⁻	T12	RB	T14	RB	T18
Diameter of steer brush	d _b	[mm]	12	14		16		20	
Minimum diameter of steel brush	$d_{b,min}$	[mm]	10,5	5 12,5		12,5 14,5		18	3,5
Max installation torque moment	T _{inst,max}	[Nm]	2 (14 for Mz DF)						

Table B3: Installation parameters in solid and hollow masonry (with sleeve)

Anchor size	М8	M8 / M1	0 / IG-M6	M12 / M	16 / IG-M8	/ IG-M10		
	;	Sleeve	12x80	16x85	16x130	20x85	20x130	20x200
Nominal drill hole diameter	d_0	[mm]	12	16	16	20	20	20
Drill hole depth	h_0	[mm]	85	90	135	90	135	205
Effective anchorage depth	h _{ef}	[mm]	80	85	130	85	130	200
Minimum wall thickness	h _{min}	[mm]	115	115	175	115	175	240
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9		-M6) / 12 (M10)	,	/18) / 12 (IG //12) / 18 (I	,
Diameter of steel brush				RB'	T16		RBT20	
Diameter of steel brush	d _b	[mm]	14	18		22		
Minimum diameter of steel brush	$d_{b,min}$	[mm]	12,5	16	3,5		20,5	
Max installation torque moment	$T_{inst,max}$	[Nm]			2	2		

ESSVE Injection system ONE, ONE ICE for masonry	
Intended Use Installation parameters and cleaning brush	Annex B 4

Table B4:	Maximum working time and minimum curing time
	ESSVE ONE

	rature in the material T	Temperature of cartridge	Gelling- / working time	Minimum curing time in dry base material ¹⁾
0°C	to +4 °C		45 min	7 h
+ 5 °C	to + 9 °C		25 min	2 h
+ 10 °C	to + 19 °C		15 min	80 min
+ 20 °C	to + 29 °C	+5°C to +40°C	6 min	45 min
+ 30 °C	to + 34 °C		4 min	25 min
+ 35 °C	to + 39 °C		2 min	20 min
+	40°C		1,5 min	15 min

In wet base material the curing time <u>must</u> be doubled

Table B5: Maximum working time and minimum curing time ESSVE ONE ICE

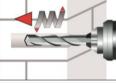
Temperature in the base material T	Temperature of cartridge	Gelling- / working time	Minimum curing time in dry base material 1)
0 °C to + 4 °C		10 min	2,5 h
+5°C to +9°C	0°C to +10°C	6 min	80 min
+ 10°C		6 min	60 min

In wet base material the curing time <u>must</u> be doubled

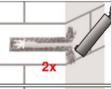
ESSVE Injection system ONE, ONE ICE for masonry	
Intended Use Gelling and Curing times	Annex B 5

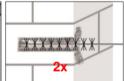
Installation Instructions

Preparation of cartridge



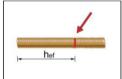
1. Remove the cap and attach the supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. In case of a foil tube cartridge, cut off the clip before use. For every working interruption longer than the recommended working time (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

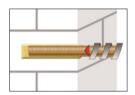



2. Initial adhesive is not suitable for fixing the anchor. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes, for foil tube cartridges six full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour.


Installation in solid masonry (without sleeve)

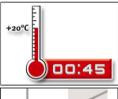
3. Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drilling method according to Annex C4-C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor. In case of aborted drill hole the drill hole shall be filled with mortar.

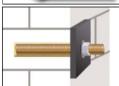




Blow out from the bottom of the bore hole two times. Attach the appropriate sized brush ($> d_{b,min}$ Table B2 or B3) to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.

5. Starting from the bottom or back of the cleaned anchor hole, fill the hole up to min two-thirds with adhesive. Slowly withdraw the static mixing nozzle will avoid creating air pockets. Observe the gel-/ working times given in Annex B 5.



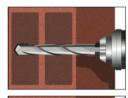

6. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

7. Be sure that the anular gap is fully filled with mortar. If no excess mortar is visible at the top of the hole, the application has to be renewed.

8. Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 5).

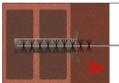
9. After full curing, the fixture can be installed with up to the max. installation torque (see Annex B4) by using a calibrated torque wrench.

ESSVE Injection system ONE, ONE ICE for masonry

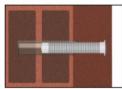

Intended Use

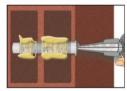
Installation instructions Solid masonry and Autoclaved Aerated Concrete

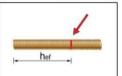
Annex B 6



Installation in solid and hollow masonry (with sleeve)

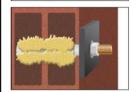

Bloom Holes to be drilled perpendicular to the surface of the base material by using a hard-metal tipped hammer drill bit. Drill a hole, with drill method according to Annex C4 – C45, into the base material, with nominal drill hole diameter and bore hole depth according to the size and embedment depth required by the selected anchor.




Blow out from the bottom of the bore hole two times. Attach the appropriate sized brush (> $d_{b,min}$ Table B3) to a drilling machine or a battery screwdriver, brush the hole clean two times, and finally blow out the hole again two times.

5. Insert the perforated sleeve flush with the surface of the masonry or plaster. Only use sleeves that have the right length. Never cut the sleeve.

6. Starting from the bottom or back fill the sleeve with adhesive. For embedment depth equal to or larger than 130 mm an extension nozzle shall be used. For quantity of mortar attend cartridges label installation instructions.
Observe the gel-/ working times given in Annex B 5.



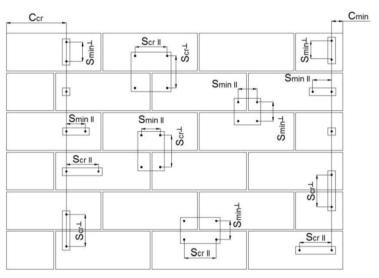
7. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor shall be free of dirt, grease, oil or other foreign material.

8. Allow the adhesive to cure to the specified curing time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Annex B 5).

9. After full curing, the fixture can be installed with up to the max. installation torque (see Annex B4) by using a calibrated torque wrench.

ESSVE Injection system ONE, ONE ICE for masonry Intended Use Installation instructions hollow brick Annex B 7

Delate Na	Installation & Use			β-fa	ctor		
Brick-No. and	category	T _a : 40°C / 24°C		T _b : 80°C / 50°C		T _c : 120°C / 72°C	
abbreviation		d/d	w/d w/w	d/d	w/d w/w	d/d	w/d w/w
1 AAC6	For all sizes	0,95	0,86	0,81	0,73	0,81	0,73
2	d₀ ≤ 14 mm	0,93	0,80	0,87	0,74	0,65	0,56
KS-NF	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6
3	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,5
KSL-3DF	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6
4	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,5
KSL-12DF	d₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6
MZ-DF 6 HIz-16DF 7 Porotherm Homebric 8 BGV-Thermo 9 Calibric R+ 10 Urbanbric	For all sizes	0,86	0,86	0,86	0,86	0,73	0,7
11 Brique creuse C40							
Blocchi Leggeri							
13 Doppio Uni							
14	d ₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,5
Bloc creux B40	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6
15	d₀ ≤ 12 mm	0,93	0,80	0,87	0,74	0,65	0,5
olid light weight concrete	d ₀ ≥ 16 mm	0,93	0,93	0,87	0,87	0,65	0,6


ESSVE Injection system ONE, ONE ICE for masonry	
Performances	Annex C 1
β-factors for job site testing under tension load	

teel, property class 4.8 teel, property class 5.6 teel, property class 5.8 teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	$\begin{array}{c} N_{Rk,s} \\ \gamma_{Ms} \\ N_{Rk,s} \\ \end{array}$	[kN] [-] [kN] [-] [kN] [-] [kN]	- 10	- - - - 18 2,0	- 29	15	23 23 1,	34	63
teel, property class 4.8 teel, property class 5.6 teel, property class 5.8 teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	$\begin{array}{c} \gamma_{Ms} \\ N_{Rk,s} \\ \gamma_{Ms} \\ \end{array}$	[-] [kN] [-] [kN] [-] [kN]	- 10	- - - 18	-	15	23	,0	63
teel, property class 4.8 teel, property class 5.6 teel, property class 5.8 teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	$\begin{array}{c} \gamma_{Ms} \\ N_{Rk,s} \\ \gamma_{Ms} \\ \end{array}$	[kN] [-] [kN] [-] [kN]	10	- 18			23		
teel, property class 5.6 teel, property class 5.8 teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	$\begin{array}{c} \gamma_{\text{Ms}} \\ N_{\text{Rk,s}} \\ \gamma_{\text{Ms}} \\ N_{\text{Rk,s}} \\ \gamma_{\text{Ms}} \\ N_{\text{Rk,s}} \\ \gamma_{\text{Ms}} \\ \end{array}$	[-] [kN] [-] [kN]	10	- 18				34	
teel, property class 5.6 teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	$\begin{array}{c} N_{Rk,s} \\ \gamma_{Ms} \\ N_{Rk,s} \\ \gamma_{Ms} \\ N_{Rk,s} \\ \gamma_{Ms} \\ \end{array}$	[kN] [-] [kN] [-]		18	29		1.	J 0-7	63
teel, property class 5.8 teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	γ_{Ms} $N_{Rk,s}$ γ_{Ms} $N_{Rk,s}$ γ_{Ms}	[-] [kN] [-]			29				
teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	$N_{Rk,s}$ γ_{Ms} $N_{Rk,s}$ γ_{Ms}	[kN] [-]	10	2,0		18	29	42	79
teel, property class 5.8 teel, property class 8.8 Stainless steel A4 / HCR, property class 70	γ _{Ms} N _{Rk,s} γ _{Ms}	[-]	10				2,		
Stainless steel A4 / HCR, property class 70	$N_{Rk,s}$ γ_{Ms}			17	29	18	29	42	79
Stainless steel A4 / HCR, property class 70	γMs		16	1,5 27	46	29	46	67	100
starriess steel A4 / HCh, property class 70		[kN]	16	1,5	46	29	1,		126
starriess steel A4 / HCh, property class 70	¹ ¹ Rk.s	[-] [kN]	14	26	41	26	41	59	110
Stainless steel A4 / HCR, property class 80		[-]	14	1,87	41	20	1,8		
Stainless steel A4 / HCR, property class 80	$\frac{\gamma_{Ms}}{N_{Rk,s}}$	[kN]	16	29	46	29	46	67	126
	γ _{Ms}	[-]	10	1,6	1 40		1,		120
Characteristic shear resistance	INIS			.,0				, -	
	$V_{Rk,s}$	[kN]	_	-	I - I	7	12	17	31
teel, property class 4.6	γ _{HK,S} γ _{Ms}	[-]		-		· ·	1,0		
	$V_{Rk,s}$	[kN]	-	-	-	7	12	17	31
teel, property class 4.8	γMs	[-]		-	1		1,2		
tool grants along 5.0	$V_{Rk,s}$	[kN]	5	9	15	9	15	21	39
teel, property class 5.6	γMs	[-]		1,67			1,0	67	
eel, property class 5.8 eel, property class 8.8	$V_{Rk,s}$	[kN]	5	9	15	9	15	21	39
	γMs	[-]		1,25			1,	25	
teel property class 8.8	$V_{Rk,s}$	[kN]	8	14	23	15	23	34	63
	γMs	[-]		1,25			1,		
Stainless steel A4 / HCR, property class 70	$V_{Rk,s}$	[kN]	7	13	20	13	20	30	55
	γMs	[-]		1,56			1,5		
Stainless steel A4 / HCR, property class 80	$V_{Rk,s}$	[kN]	8	15	23	15	1,33		63
	γMs	[-]		1,33			1,;	33	
				1				I	
aracteristic bending moment el, property class 4.6	$M_{Rk,s}$	[Nm]	-	-	-	15	30	52	133
	γMs	[-]		-			1,0		
teel, property class 4.8	$M_{Rk,s}$	[Nm]	-	-	-	15	30	52	133
	γ _{Ms}	[-]		-	07	10	1,	1	10-
teel, property class 5.6	$M_{Rk,s}$	[Nm]	8	19	37	19	37	66	167
	γ _{Ms}	[-]	8	1,67 19	37	19	37	66	167
teel, property class 5.8	M _{Rk,s}	[Nm] [-]	0	1,25	37	19	1,		107
	γ_{Ms}	[Nm]	12	30	60	30	60	105	266
teel, property class 8.8		[-]	12	1,25	1 00	- 00	1,2		
	$M_{Rk,s}$	[Nm]	11	26	52	26	52	92	233
Stainless steel A4 / HCR, property class 70	γ _{Ms}	[-]	1	1,56			1,		
Natalana da IA471105	$M_{Rk,s}$	[Nm]	12	30	60	30	60	105	266
Stainless steel A4 / HCR, property class 80	γ _{Ms}	[-]		1,33	1		1,		
ESSVE Injection system ONE, ONE	ICE fo	r maso	nry				Δnne	ex C 2	

Spacing and edge distances

 $\begin{array}{lll} c_{cr} & = & Characteristic \ edge \ distance \\ c_{min} & = & Minimum \ Edge \ distance \\ s_{cr} & = & Characteristic \ spacing \\ s_{min} & = & Minimum \ spacing \end{array}$

 $s_{cr,ll}$; $(s_{min,ll})$ = Characteristic (minimum) spacing for anchors placed parallel to bed joint $s_{cr,\perp}$; $(s_{min,\perp})$ = Characteristic (minimum) spacing for anchors placed perpendicular to bed joint

Load direction Anchor position	Tension load	Shear load parallel to free edge	Shear load perpendicular to free edge
Anchors places parallel to bed joint $s_{cr,II}$; $(s_{min,II})$		V	V-•••
Anchors places perpendicular to bed joint $s_{cr,\perp}$ ($s_{min,\perp}$)		V	V-

 $\begin{array}{ll} \alpha_{g,N,\parallel} = & \text{Group factor in case of tension load for anchors placed parallel to the bed joint} \\ \alpha_{g,V,\parallel} = & \text{Group factor in case of shear load for anchors placed parallel to the bed joint} \\ \alpha_{g,N,\perp} = & \text{Group factor in case of tension load for anchors placed perpendicular to the bed joint} \\ \alpha_{g,V,\perp} = & \text{Group factor in case of shear load for anchors placed perpendicular to the bed joint} \\ \end{array}$

 $(N_{Rk:} N_{Rk,b} \text{ or } N_{Rk,b,j} \text{ for } c_{cr})$

 $(V_{Rk:} V_{Rk,c}; V_{Rk,c,j}; V_{Rk,b} \text{ or } V_{Rk,b,j} \text{ for } c_{cr})$

(with the relevant α_g)

ESSVE Injection system ONE, ONE ICE for masonry	
Performances Edge distance and anchor spacing	Annex C 3

Brick type: Autoclaved Aerated Concrete - AAC6

Table C3: Description of the brick

Brick type	Autoclaved Aerated Concrete AAC6
Bulk density ρ [kg/dm³]	0,6
Compressive strength $f_b \ge [N/mm^2]$	6
Code	EN 771-4
Producer (country code)	e.g. Porit (DE)
Brick dimensions [mm]	499 x 240 x 249
Drilling method	Rotary

Table C4: Installation parameter

[-] [mm]	M8 80	M10/IG-M6 90	M12/IG-M8	M16/IG-M10	
	80	90	100	100	
[1		80 90 100 100			
[mm]	1,5*h _{ef}				
[mm]	75				
[mm]		75 (1,5*h _{ef})			
[mm]	3*h _{ef}				
[mm]	100				
	[mm] [mm]	[mm] [mm]	[mm] 7 [mm] 7	[mm] 75 [mm] 75 (1,5*h _{ef}) [mm] 3*h _{ef}	

 $c_{\text{min,V,II}}$ for shear loading parallel to the free edge; $c_{\text{min,v,}}$ for shear loading perpendicular the free edge

Table C5: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed		125 (M8:120)	100			1,8
parallel to horizontal joint		1,5*hef	3*hef	$\alpha_{g,N,II}$		2,0
⊥: anchors placed		75	100		[-]	1,4
perpendicular to horizontal joint		1,5*hef	3*hef	$\alpha_{g,N,\perp}$		2,0

Table C6: Group factor for anchor group in case of shear loading parallel to free edge

Configura	ation	with c ≥	with s ≥			
II: anchors placed		75	100			1,2
parallel to horizontal joint	V	1,5*hef	3*hef	α _{g,V,II}	r 1	2,0
⊥: anchors placed perpendicular to horizontal joint	V	1,5*hef	3*hef	$\alpha_{\text{g,V,}\perp}$	ניו	2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances Autoclaved Aerated Concrete - AAC6	Annex C 4
Description of the brick	
Installation parameters	

Brick type: Autoclaved Aerated Concrete – AAC6

Table C7: Group factor for anchor group in case of shear loading perpendicular to free edge

_	_	· ·			_	
Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V	1,5*hef	3,0*hef	$\alpha_{g,V,II}$	r.1	2,0
⊥: anchors placed perpendicular to horizontal joint	V	1,5*hef	3,0*hef	$lpha_{ extsf{g}, extsf{V},ot}$	[-]	2,0

Table C8: Characteristic values of resistance under tension and shear loads

		Characteristic resistance								
	Effective anchorage depth	Use category								
		d/d				d/d w/d w/w				
Anchor size		40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range		
	h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$)		$V_{Rk,b}^{2)3)}$				
	[mm]				[kN]					
			Compressiv	ve strength f	_b ≥ 6 N/mm ²					
M8	80	2,5 (2,0)	2,5 (1,5)	2,0 (1,2)	2,5 (1,5)	2,0 (1,5)	1,5 (1,2)	6,0		
M10/IG-M6	90	4,0 (2,5)	3,0 (2,0)	2,5 (1,5)	3,5 (2,5)	3,0 (2,0)	2,5 (1,5)	10,0		
M12/IG-M8	100	5,0 (3,5)	4,0 (3,0)	3,0 (2,5)	4,5 (3,0)	3,5 (2,5)	3,0 (2,5)	10,0		
M16/IG-M10	100	6,5 (4,5)	5,5 (3,5)	4,0 (3,0)	5,5 (4,0)	5,0 (3,5)	4,0 (3,0)	10,0		

Values are valid for c_{cr}, values in brackets are valid for single anchors with c_{min}

Table C9: Displacements

Anchor size h _{ef} [mm]	h _{ef}	N	δ_{N} / N	δ_{N0}	δN∞	V	δνο	δ∨∞
	[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	80	0,9	0.10	0,16	0,32	1,3	0,8	1,20
M10/IG-M6	90	1,4	0,18	0,26	0,51	1,8	1,2	1,80
M12/IG-M8	100	1,8	0.00	0,14	0,29	2,1	1,4	2,10
M16/IG-M10	100	2,3	0,08	0,19	0,37	2,3	1,5	2,25

ESSVE Injection system ONE, ONE ICE for masonry	
Performances Autoclaved Aerated Concrete – AAC6	Annex C 5
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load / Displacements	

For calculation of V_{Rk,c} see ETAG029, Annex C;

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

Brick type: Calcium silicate solid brick KS-NF

Table C10: Description of the brick

Brick type	Calcium silicate solid brick KS-NF
Bulk density $\rho [kg/dm^3]$	2,0
Compressive strength $f_b \ge [N/mm^2]$	10, 20 or 27
Code	EN 771-2
Producer (country code)	e.g. Wemding (DE)
Brick dimensions [mm]	240 x 115 x 71
Drilling method	Hammer

Table C11: Installation parameter

Anchor size		[-]	All sizes			
Edge distance c _{cr}		[mm]	1,5*h _{ef}			
Minimum edge distance c _{min}		[mm]	60			
Spacing S _{cr}		[mm]	3*h _{ef}			
Minimum spacing s _{min}		[mm]	120			

Table C12: Group factor for anchor group in case of tension loading

Configura	ation	with c ≥	with s ≥			
II: anchors placed		60	120		- [-]	1,0
parallel to horizontal joint		140	120	$\alpha_{g,N,II}$		1,5
		1,5*hef	3*h _{ef}			2,0
⊥: anchors placed perpendicular to		60	120			0,5
		1,5*hef	120	$\alpha_{g,N,\perp}$		1,0
horizontal joint		1,5*hef	3*h _{ef}]		2,0

Table C13: Group factor for anchor group in case of shear loading parallel to free edge

Configuration		with c ≥ with s ≥				
II: anchors placed		60	120		- [-]	1,0
parallel to horizontal joint	V	115	120	$\alpha_{g,V,II}$		1,7
		1,5*hef	3*h _{ef}			2,0
⊥: anchors placed	V	60	120			1,0
perpendicular to horizontal joint		1,5*hef	120	$lpha_{g,V,\perp}$		1,0
		1,5*hef	3*h _{ef}			2,0

Table C14: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed		60	120		.,	1,0
parallel to horizontal joint	V	1,5*hef	3*h _{ef}	$\alpha_{g,V,II}$		2,0
⊥: anchors placed		60	120		[-]	1,0
perpendicular to horizontal joint	V	1,5*hef	3*h _{ef}	$\alpha_{g,V,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium solid brick KS-NF	Annex C 6
Installation parameters	

Brick type: Calcium silicate solid brick KS-NF Table C15: Characteristic values of resistance under tension and shear loads

Table	J 15. CI	iaracteristic	values of it	esisianice i	ilidel tellsic	on and sile	ai ioaus					
Characteristic resistance Use category												
			Use category									
Anchor	Classia	Effective anchorage depth	d/d			w/d w/w			d/d w/d w/w			
size	Sleeve	h _{ef} [mm]	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For All temperature range			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$N_{Rk,b} = N_{Rk,p}$	1)	V _{Rk,b} ²⁾³⁾			
		[mm]				[kN]			7.0.1			
	Compressive strength f _b ≥ 10 N/mm ²											
M8	-	80	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)			
M10 / IG-M6	-	90	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (2,0)			
M12 / IG-M8	-	100	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	2,5 (1,5)			
M16 / IG-M10	-	100	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,0 (1,5)	3,5 (1,5)	2,0 (0,9)	2,5 (1,5)			
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)			
M8 /	16x85	85	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)			
M10/ IG-M6	16x130	130	3,5 (1,5)	3,0 (1,5)	2,0 (0,9)	3,5 (1,5)	3,0 (1,5)	2,5 (1,2)	2,5 (1,5)			
M12/	20x85	85	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)			
M16 /	20x130	130	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)			
IG-M8 / IG-M10	20x200	200	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	3,0 (1,5)	2,5 (1,2)	2,0 (0,9)	2,5 (1,5)			
	1				strength f _b ≥			I				
M8	-	80	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)			
M10 / IG-M6	-	90	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)			
M12/ IG-M8	-	100	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)			
M16/ IG-M10	-	100	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	5,0 (2,5)	5,0 (2,5)	3,5 (1,5)	4,0 (2,5)			
M8	12x80	80	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,0)	4,5 (2,0)	3,0 (1,5)	4,0 (2,5)			
M8 /	16x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)			
M10/ IG-M6	16x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,0 (2,5)			
M12 /	20x85	85	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)			
M16 /	20x130	130	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)			
IG-M8 / IG-M10	20x200	200	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,0)	4,0 (2,0)	3,0 (1,5)	4,0 (2,5)			

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V_{Rk,b} by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium solid brick KS-NF	Annex C 7
Characteristic values of resistance under tension and shear load	

Values are valid for c_{cr} , values in brackets are valid for single anchors with c_{min} For c_{cr} calculation of $V_{Rk,c}$ see Technical Report TR 054; values in brackets $V_{Rk,b} = V_{Rk,c}$ for single anchors with c_{min}

Brick type: Calcium silicate solid brick KS-NF

Table C16: Characteristic values of resistance under tension and shear loads (continue)

			Characteristic resistance								
			Use category								
Anchor		Effective anchorage depth h _{ef} [mm]		d/d			d/d w/d w/w				
size	Sieeve		40°C/24°C	80°C/50°C		40°C/24°C	80°C/50°C	120°C/72°C	For All temperature range		
		h _{ef}		$N_{Rk,b} = N_{Rk,t}$	1)		$N_{Rk,b} = N_{Rk,t}$	1)	V _{Rk,b} ²⁾³⁾		
		[mm]				[kN]					
			Com	pressive s	trength f _b ≥	27 N/mm ²					
M8	-	80	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M10 / IG-M6	-	90	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	5,5 (3,0)		
M12 / IG-M8	-	100	7,0 (3,5)	6,5 (3,0)	5,0 (2,5)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M16 / IG-M10	-	100	6,0 (3,0)	5,5 (2,5)	4,5 (2,0)	6,0 (3,0)	5,5 (2,5)	4,0 (2,0)	4,5 (2,5)		
M8	12x80	80	6,5 (3,0)	6,0 (3,0)	4,5 (2,0)	5,5 (2,5)	5,0 (2,5)	3,5 (1,5)	4,5 (2,5)		
M8 /	16x85	85	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)		
M10/ IG-M6	16x130	130	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	5,5 (2,5)	5,0 (2,5)	4,0 (2,0)	4,5 (2,5)		
M12 /	20x85	85	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		
M16 /	20x130	130	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		
IG-M8 / IG-M10	20x200	200	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	5,0 (2,5)	4,5 (2,0)	3,5 (1,5)	4,5 (2,5)		

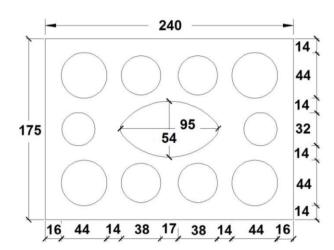
Values are valid for c_{cr}, values in brackets are valid for single anchors with c_{min}

Table C17: **Displacements**

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80					1,7	0,90	1,35
M10 / IG-M6	-	90	2,0		0,30	0,60	2,0	1,10	1,65
M12 / IG-M8	-	100							
M16 / IG-M10	-	100	1,7	0,15	0,26	0,51			
M8	12x80	80		, ,,,,	,		1,7	0,90	1,35
M8 / M10/	16x85	85	1.4		0,21	0,43			
IG-M6	16x130	130	1,4		0,21	0,43			
M12 / M16 / IG-M8 /	20x85	85							
	20x130	130	1,3		0,19	0,39			
IG-M10	20x200	200							

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium solid brick KS-NF	Annex C 8
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

For c_{cr} calculation of $V_{Rk,c}$ see Technical Report TR 054; values in brackets $V_{Rk,b} = V_{Rk,c}$ for single anchors with c_{min} The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Calcium silicate hollow brick KS L-3DF

Table C18: Description of the brick

Brick type	Calcium silicate hollow brick KSL-3DF
Bulk density $\rho [kg/dm^3]$	1,4
Compressive strength $f_b \ge [N/mm^2]$	8, 12 or 14
Code	EN 771-2
Producer (country code)	e.g. Wemding (DE)
Brick dimensions [mm]	240 x 175 x 113
Drilling method	Rotary

Table C19: Installation parameters

Anchor size			All sizes
Edge distance C _{cr}		[mm]	100 (120) ¹⁾
Minimum edge distance C _{min}		[mm]	60
Special	S _{cr,II}	[mm]	240
Spacing	S _{cr,⊥}	[mm]	120
Minimum spacing	S _{min}	[mm]	120

¹⁾ Value in brackets for SH20x85; SH20x130 and SH20x200

Table C20: Group factor for anchor group in case of tension loading

Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint		60	120		[-]	1,5
		C _{cr}	240	$\alpha_{g,N,II}$		2,0
		160	120			2,0
⊥: anchors placed		60	120			1,0
perpendicular to horizontal joint		C _{cr}	120	$lpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium hollow brick KS L-3DF	Annex C 9
Description of the brick	
Installation parameters	

Brick type:	Calcium	silicate	hollow	brick KS	L-3DF
-------------	---------	----------	--------	----------	-------

Table C21: Group factor for anchor group in case of shear loading parallel to free edge

1			• •	-		
Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint		60	120			1,0
	norizontal V ••	160	120	$\alpha_{g,V,II}$		1,6
		C _{cr}	240		r_1	2,0
⊥: anchors placed perpendicular to horizontal joint		60	120		[[]	1,0
	*	C _{cr}	120	$lpha_{g,V,\perp}$		2,0

Group factor for anchor group in case of shear loading perpendicular to free edge Table C22:

Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal	\ <u>\</u>	60	120			1,0
joint		C _{cr}	240	$\alpha_{g,V,II}$		2,0
⊥: anchors placed	\ <u>\</u>	60	120		[-]	1,0
perpendicular to horizontal joint		C _{cr}	120	$\alpha_{g,V,\perp}$		2,0

Table C23: Characteristic values of resistance under tension and shear loads

			Characteristic resistance								
		Effective anchorage	Use category								
Amahas				d/d			w/d; w/w		d/d; w/d; w/w		
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	1)		$N_{Rk,b} = N_{Rk,p}$	1)	$V_{Rk,b}^{4)}$		
		[mm]				[kN]					
	Compressive strength f _b ≥ 8 N/mm ²										
M8	12x80	80	1,5	1,5	1,2	1,5	1,2	0,9	$2,5^{2)}(0,9)^{3)}$		
M8 / M10	16x85	85	1,5	1,5	1,2	1,5	1,5	1,2	$4,0^{2)}(1,5)^{3)}$		
/ IG-M6	16x130	130	1,5	1,5	1,2	1,5	1,5	1,2	$4,0^{2)}(1,5)^{3)}$		
M12 /	20x85	85	4,5	4,0	3,0	4,5	4,0	3,0	4,0 ²⁾ (1,5) ³⁾		
M16 / IG-M8 /	20x130	130	4,5	4,0	3,0	4,5	4,0	3,0	4,0 ²⁾ (1,5) ³⁾		
IG-M10	20x200	200	4,5	4,0	3,0	4,5	4,0	3,0	4,0 ²⁾ (1,5) ³⁾		
			Comp	ressive stre	ength f _b ≥ 1	2 N/mm ²					
M8	12x80	80	2,0	2,0	1,5	2,0	1,5	1,2	$3,0^{2)}(1,2)^{3)}$		
M8 / M10	16x85	85	2,0	2,0	1,5	2,0	2,0	1,5	$4,5^{2)}(1,5)^{3)}$		
/ IG-M6	16x130	130	2,5	2,5	1,5	2,5	2,5	1,5	$4.5^{2)} (1.5)^{3)}$		
M12 /	20x85	85	6,0	5,5	4,0	6,0	5,5	4,0	4,5 ²⁾ (1,5) ³⁾		
M16 / IG-M8 /	20x130	130	6,0	5,5	4,0	6,0	5,5	4,0	4,5 ²⁾ (1,5) ³⁾		
IG-M10	20x200	200	6,0	5,5	4,0	6,0	5,5	4,0	4,5 ²⁾ (1,5) ³⁾		

¹⁾

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V_{Rk,b} by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium hollow brick KS L-3DF	Annex C 10
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

²⁾

Values are valid for c_{cr} and c_{min} $V_{Rk,c,II} = V_{Rk,b} \text{ valid for shear load parallel to free edge}$ $V_{Rk,c,\perp} = V_{Rk,b} \text{ (values in brackets) valid for shear load in direction to free edge}$ 3)

Brick type: Calcium silicate hollow brick KS L-3DF

Table C24: Characteristic values of resistance under tension and shear loads (continue)

					Char	acteristic re	sistance				
				Use category							
		Effective anchorage		d/d			d/d; w/d; w/w				
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range		
		h _{ef}		$N_{Rk,b} = N_{Rk,b}^{1}$			$N_{Rk,b} = N_{Rk,p}^{-1}$				
		[mm]				[kN]					
			Comp	ressive stre	ength f _b ≥ 1	4 N/mm ²					
M8	12x80	80	2,5	2,5	1,5	2,0	2,0	1,5	$(3,5^2)(1,5)^{(3)}$		
M8 / M10	16x85	85	2,5	2,5	1,5	2,5	2,5	1,5	$6,0^{2)}(2,0)^{3)}$		
/ IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	$6,0^{2)}(2,0)^{3)}$		
M12 /	20x85	85	6,5	6,0	4,5	6,5	6,0	4,5	$6.0^{2)} (2.0)^{3)}$		
M16 / IG-M8 /	20x130	130	6,5	6,0	4,5	6,5	6,0	4,5	$6.0^{2)} (2.0)^{3)}$		
IG-M10	20x200	200	6,5	6,0	4,5	6,5	6,0	4,5	$6.0^{2)} (2.0)^{3)}$		

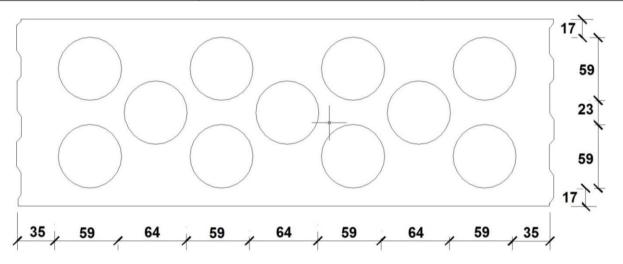
Displacements Table C25:

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80					1,0	1,0	1,50
M8 / M10 /	16x85	85	0,71		0,64	1,29			
IG-M6	16x130	130		0,90					
M12/M16/	20x85	85		0,90			1,7	1,9	2,85
IG-M8 /		130	1,86		1,67	3,34			
IG-M10	20x200	200							

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium hollow brick KS L-3DF	Annex C 11
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

Values are valid for c_{cr} and c_{min} $V_{Rk,c,II} = V_{Rk,b} \text{ valid for shear load parallel to free edge}$ $V_{Rk,c,\perp} = V_{Rk,b} \text{ (values in brackets) valid for shear load in direction to free edge}$

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V_{Rk,b} by 0,8



Brick type: Calcium silicate hollow brick KS L-12DF

Table C26: Description of the brick

Brick type	Calcium silicate hollow brick KSL-12DF
Bulk density $\rho [kg/dm^3]$	1,4
Compressive strength $f_b \ge [N/mm^2]$	10, 12 or 16
Code	EN 771-2
Producer (country code)	e.g. Wemding (DE)
Brick dimensions [mm]	498 x 175 x 238
Drilling method	Rotary

Table C27: Installation parameters

Anchor size		[-]	All sizes
Edge distance	C _{cr}	[mm]	100 (120) ¹⁾
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Spacing	S _{cr,II}	[mm]	498
Spacing	S _{cr,⊥}	[mm]	238
Minimum spacing	S _{min}	[mm]	120

Value in brackets for SH20x85 and SH20x130

Table C28: Group factor for anchor group in case of tension loading

Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal		100	120			1,0
joint		C _{Cr}	498	$\alpha_{g,N,II}$,	2,0
⊥: anchors placed		100	120		[-]	1,0
perpendicular to horizontal joint		C _{cr}	238	$\alpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances Calcium hollow brick KS L-12DF	Annex C 12
Description of the brick	
Installation parameters	

²⁾ For V_{Rk,c}: c_{min} according to Technical Report TR 054

Brick type: Calcium silicate hollow brick KS L-12DF

Table C29: Group factor for anchor group in case of shear loading parallel to free edge

Configur	ation	with c≥	with s ≥			
II: anchors placed parallel to horizontal joint	V	C _{Cr}	498	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	238	$\alpha_{g,V,\perp}$	1-1	2,0

Table C30: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V	C _{Cr}	498	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	238	$\alpha_{g,V,\perp}$	[-]	2,0

Table C31: Characteristic values of resistance under tension and shear loads

		1	1						
					Char	acteristic r	esistance		
						Use categ	gory		
		Effective anchorage		d/d			w/d w/w		
Anchor size	Sleeve	depth			120°C/72°C				For all temperature range
		h _{ef}	1	$N_{Rk,b} = N_{Rk,b}$	1)	N	$J_{Rk,b} = N_{Rk,b}$	1) p	$V_{Rk,b}^{(2)(3)}$
		[mm]				[kN]			
			Compres	sive stren	gth f _b ≥ 10	N/mm ²			
M8	12x80	80	0,6	0,6	0,4	0,5	0,5	0,4	2,5
M8 / M10 /	16x85	85	0,6	0,6	0,4	0,6	0,6	0,4	5,5
IG-M6	16x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5
M12 / M16 /	20x85	85	1,5	1,5	0,9	1,5	1,5	0,9	5,5
IG-M8 / IG-M10	20x130	130	2,5	2,5	2,0	2,5	2,5	2,0	5,5
			Compres	sive stren	gth f _b ≥ 12	N/mm ²			
M8	12x80	80	0,75	0,6	0,5	0,6	0,6	0,4	3,0
M8 / M10 /	16x85	85	0,75	0,6	0,5	0,75	0,6	0,5	6,5
IG-M6	16x130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5
M12 / M16 /	20x85	85	1,5	1,5	1,2	1,5	1,5	1,2	6,5
IG-M8 / IG-M10	20×130	130	3,0	3,0	2,0	3,0	3,0	2,0	6,5

Values are valid for c_{cr} and c_{min}

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 120 mm: V_{Rk,c,II} = V_{Rk,b}
 The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V_{Rk,b} by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium hollow brick KS L-12DF	Annex C 13
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

Brick type: Calcium silicate hollow brick KS L-12DF

Table C32: Characteristic values of resistance under tension and shear loads (continue)

			Characteristic resistance									
				Use category								
Anchor size	Sleeve	Effective anchorage depth		d/d		w/d w/w			d/d w/d w/w			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range			
		h _{ef}	1	$N_{Rk,b} = N_{Rk,b}$	1) p	1	$N_{Rk,b} = N_{Rk,b}$	1) p	$V_{Rk,b}^{(2)3)}$			
		[mm]				[kN]						
			Compres	sive stren	gth f _b ≥ 16	N/mm ²						
M8	12x80	80	0,9	0,9	0,6	0,75	0,75	0,5	3,5			
M8 / M10 /	16x85	85	0,9	0,9	0,6	0,9	0,9	0,6	8,0			
IG-M6	16x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0			
M12 / M16 /	20x85	85	2,0	2,0	1,5	2,0	2,0	1,5	8,0			
IG-M8 / IG-M10	20x130	130	4,0	3,5	2,5	4,0	3,5	2,5	8,0			

Table C33: **Displacements**

		E ((1)	1						
Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\omega}}}$	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,26		0,23	0,46	1,0	1,3	1,95
M8 / M10 /	16x85	85	0,20			0,40			
IG-M6	16x130	130	1,14	0,90	1,03	2,06			
M12 / M16	20x85	85	0,57		0,51	1,03	2,3	2,5	3,75
/ IG-M8 / IG-M10	20x130	130	1,14		1,03	2,06			

ESSVE Injection system ONE, ONE ICE for masonry	
Performances calcium hollow brick KS L-12DF	Annex C 14
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

Values are valid for c_{cr} and c_{min} Calculation of $V_{Rk,c}$ see Technical Report TR 054, except for shear load parallel to free edge with $c \ge 120$ mm: $V_{Rk,c,ll} = V_{Rk,b}$ The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply V_{Rk,b} by 0,8

Brick type: Clay solid brick Mz-DF

Table C34: Description of the brick

Brick type	Clay solid brick Mz-DF
Bulk density ρ [kg/dm ³]	1,6
Compressive strength $f_b \ge [N/mm^2]$	10, 20 or 28
Code	EN 771-1
Producer (country code)	e.g. Unipor (DE)
Brick dimensions [mm]	240 x 115 x 55
Drilling method	Hammer

Table C35: Installation parameter

Anchor size			All sizes
Edge distance	Ccr	[mm]	1,5*h _{ef}
Minimum edge distance	C _{min}	[mm]	60
Spacing	Scr	[mm]	3*h _{ef}
Minimum spacing	S _{min}	[mm]	120

Table C36: Group factor for anchor group in case of tension loading

Configura	ation	with c ≥	with s ≥			
II: anchors placed		60	120			0,7
parallel to horizontal joint		1,5*hef	3*h _{ef}	$\alpha_{g,N,II}$.,	2,0
⊥: anchors placed		60	120		[-]	0,5
perpendicular to		1,5*hef	120	$\alpha_{g,N,\perp}$		1,0
horizontal joint		1,5*hef	3*h _{ef}			2,0

Table C37: Group factor for anchor group in case of shear loading parallel to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed		60	120			0,5
parallel to horizontal	V	90	120	$\alpha_{g,V,II}$		1,1
joint		1,5*hef	3*h _{ef}			2,0
⊥: anchors placed		60	120		[-]	0,5
perpendicular to horizontal joint	V	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
		1,5*hef	3*h _{ef}			2,0

Table C38: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed		60	120			0,5
parallel to horizontal	V - • • •	1,5*hef	120	$\alpha_{g,V,II}$		1,0
joint		1,5*hef	3*h _{ef}			2,0
⊥: anchors placed		60	120		[-]	0,5
perpendicular to horizontal joint	V	1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
		1,5*hef	3*h _{ef}			2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay solid brick Mz-DF	Annex C 15
Description of the brick	
Installation parameters	

				Characta	ristic resistance	
				d/d	category	d/d
		Effective		w/d		w/d
		anchorage		w/w		w/w
Anchor size	Sleeve	depth				For all
			40°C/24°C	80°C/50°C	120°C/72°C	temperature range
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$)	$V_{Rk,b}^{2)3)}$
		[mm]		111,0	[kN]	11110
•		Compressive s	trength f _b ≥ 10	N/mm ²	<u> </u>	
M8	-	80	3,5 (1,5)	3,5 (1,5)	2,5 (1,2)	3,5 (1,2)
M10 / IG-M6	-	90	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
M12 / IG-M8	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	3,5 (1,2)
M16 / IG-M10	-	100	4,0 (2,0)	4,0 (2,0)	3,5 (1,5)	5,5 (1,5)
M8	12x80	80	3,5 (1,5)	3,5 (1,5)	3,0 (1,2)	3,5 (1,2)
M8 / M10 /	16x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M6	16x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
M12 / M16 /	20x85	85	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M8 /	20x130	130	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
IG-M10	20x200	200	3,5 (1,5)	3,5 (1,5)	3,0 (1,5)	3,5 (1,2)
		Compressive s	trength f _b ≥ 20	N/mm ²		
M8	-	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)
M10 / IG-M6	-	90	5,5 (2,5)	5,5 (2,5)	4,5 (2,0)	5,0 (1,5)
M12 / IG-M8	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,0 (1,5)
M16 / IG-M10	-	100	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	8,0 (2,5)
M8	12x80	80	4,5 (2,5)	4,5 (2,5)	4,0 (2,0)	5,0 (1,5)
M8 / M10 /	16x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M6	16x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
M12 / M16 /	20x85	85	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M8 /	20x130	130	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
IG-M10	20x200	200	5,0 (2,5)	5,0 (2,5)	4,0 (2,0)	5,0 (1,5)
		Compressive s	trength f _b ≥ 28	N/mm ²		
M8	-	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)
M10 / IG-M6	-	90	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
M12 / IG-M8	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	5,5 (2,0)
M16 / IG-M10	-	100	7,0 (3,5)	7,0 (3,5)	6,0 (3,0)	9,0 (3,0)
M8	12x80	80	5,5 (2,5)	5,5 (2,5)	4,5 (2,5)	5,5 (2,0)
M8 / M10 /	16x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M6	16x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
M12 / M16 /	20x85	85	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M8 /	20x130	130	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)
IG-M10	20x200	200	6,0 (3,0)	6,0 (3,0)	5,0 (2,5)	5,5 (2,0)

Values are valid for c_{cr}, values in brackets are valid for single anchors with c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{\text{Rk,b}}$ by 0,8

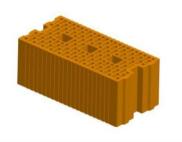
ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay solid brick Mz-DF Characteristic values of resistance under tension and shear load	Annex C 16

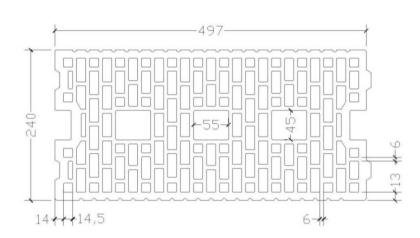
For c_{cr} calculation of $V_{Rk,c}$ see Technical Report TR 054; for c_{min} values in brackets $V_{Rk,b} = V_{Rk,c}$

Page 33 of European Technical Assessment ETA-18/0642 of 8 October 2018

English translation prepared by DIBt

Brick type: Cla	y solid b	rick Mz-DF							
Table C40: D	isplaceme	nts							
Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ _{∨∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80	1,3		0,19	0,39		1.00	
M10 / IG-M6	-	90	1,6		0,24	0,47	1,9		
M12 / IG-M8	-	100	1.7	,7	0.00	0.51			
M16 / IG-M10	-	100	1,7		0,26	0,51	2,9		
M8	12x80	80		0.15					1.50
M8 / M10 /	16x85	85		0,15				1,00	1,50
IG-M6	16x130	130	1.0		0.10	0.20	1.0		
M12 / M16 / IG-M8 / IG-M10	20x85	85	1,3		0,19	0,39	1,9		
	20x130	130							
	20x200	200							


ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay solid brick Mz-DF	Annex C 17
Displacements	



Brick type: Clay hollow brick HLz-16-DF

Table C41: Description of the brick

Brick type	Clay hollow brick HLz-16-DF
Bulk density ρ [kg/dm ³]	0,8
Compressive strength $f_b \ge [N/mm^2]$	6, 8, 12, 14
Code	EN 771-1
Producer (country code)	e.g. Unipor DE)
Brick dimensions [mm]	497 x 240 x 238
Drilling method	Rotary

Table C42: Installation parameters

Anchor size		[-]	All sizes			
Edge distance	C _{cr}	[mm]	100 (120) ¹⁾			
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾			
Species	S _{cr,II}	[mm]	497			
Spacing	S _{cr,⊥}	[mm]	238			
Minimum spacing	S _{min}	[mm]	100			
M						

Value in brackets for SH20x85; SH20x130 and SH20x200

Table C43: Group factor for anchor group in case of tension loading

Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal		C _{cr}	100			1,3
joint		C _{cr}	497	α _{g,N,II}	r 1	2,0
⊥: anchors placed		C _{cr}	100	800	[-]	1,1
perpendicular to horizontal joint		C _{cr}	238	$\alpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick HLz-16DF	Annex C 18
Description of the brick	
Installation parameters	

For V_{Rk,c}: c_{min} according to Technical Report TR 054

Brick type: Clay hollow brick HLz-16-DF

Table C44: Group factor for anchor group in case of shear loading parallel to free edge

Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V	C _{cr}	497	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	238	$\alpha_{g,V,\perp}$	[-]	2,0

Table C45: Group factor for anchor group in case of shear loading perpendicular to free edge

Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V-•••	C _{cr}	497	$\alpha_{g,V,II}$	r.1	2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{Cr}	238	$\alpha_{\text{g,V},\perp}$	[-]	2,0

Table C46: Characteristic values of resistance under tension and shear loads

				Characte	ristic resistance				
			Use category						
		Effective		d/d		d/d			
		anchorage		w/d		w/d			
Anchor size	Sleeve	depth		w/w		w/w			
Afficitor size	Sieeve	Сери	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾			
		[mm]		[kN]					
Compressive strength f _b ≥ 6 N/mm ²									
M8	12x80	80	2,5	2,5	2,0	2,5			
M8 / M10/	16x85	85	2,5	2,5	2,0	4,5			
IG-M6	16x130	130	3,5	3,5	3,0	4,5			
NATO / NATO /	20x85	85	2,5	2,5	2,0	5,0			
M12 / M16 / IG-M8 / IG-M10	20x130	130	3,5	3,5	3,0	6,0			
IG-IVIO / IG-IVI IO	20x200	200	3,5	3,5	3,0	6,0			
		Compressive st	trength f _b ≥ 8	N/mm ²					
M8	12x80	80	3,0	3,0	2,5	3,0			
M8 / M10/	16x85	85	3,0	3,0	2,5	5,5			
IG-M6	16x130	130	4,5	4,5	3,5	5,5			
M40/M46/	20x85	85	3,0	3,0	2,5	6,0			
M12 / M16 / IG-M8 / IG-M10	20x130	130	4,5	4,5	3,5	7,0			
IG-IVIO / IG-IVITO	20x200	200	4,5	4,5	3,5	7,0			

Values are valid for c_{cr} and c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick HLz-16DF	Annex C 19
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 125 mm: V_{Rk,c,II} = V_{Rk,b}

Brick type: Clay hollow brick HLz-16-DF

Table C47: Characteristic values of resistance under tension and shear loads (continue)

				Obassata					
			Characteristic resistance						
			Use category						
		Effective		d/d		d/d			
		anchorage		w/d		w/d			
Anchor size	Clasus	depth		w/w		w/w			
Anchor size	Sleeve	Сери				For all			
			40°C/24°C	80°C/50°C	120°C/72°C	temperature			
						range			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ²⁾³⁾			
		[mm]		[kN]					
Compressive strength f _b ≥ 12 N/mm ²									
M8	12x80	80	3,5	3,5	3,0	4,0			
M8 / M10/	16x85	85	3,5	3,5	3,0	6,5			
IG-M6	16x130	130	5,0	5,0	4,5	6,5			
M12 / M16 /	20x85	85	3,5	3,5	3,0	7,0			
IG-M8 / IG-M10	20x130	130	5,0	5,0	4,5	9,0			
IG-IVIO / IG-IVITO	20x200	200	5,0	5,0	4,5	9,0			
		Compressive st	rength f _b ≥ 14	N/mm ²					
M8	12x80	80	4,0	4,0	3,0	4,0			
M8 / M10/	16x85	85	4,0	4,0	3,0	6,5			
IG-M6	16x130	130	5,5	5,5	4,5	6,5			
M12 / M16 /	20x85	85	4,0	4,0	3,0	7,0			
IG-M8 / IG-M10	20x130	130	5,5	5,5	4,5	9,0			
14 100 / 14 10110	20x200	200	5,5	5,5	4,5	9,0			

Values are valid for c_{cr} and c_{min}

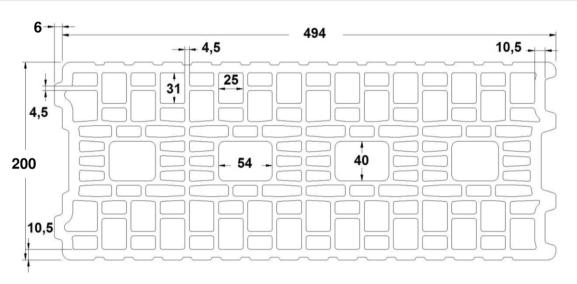
Table C48: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ_N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\omega}}}$	V	δ_{V0}	$\delta_{V^{oo}}$
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	1,14		0,11	0,23	1,10	1,20	1,80
M8 / M10/	16x85	85	1,14		0,11	0,23	1,86	1,50	2,25
IG-M6	16x130	130	1,57	0,10	0,16	0,31	1,00	1,50	2,25
M12 / M16 /	20x85	85	1,14	0,10	0,11	0,23	1,86	1,50	2,25
IG-M8 /	20x130	130	1,57		0,16	0,31	2,57	2,10	3,15
IG-M10	20x200	200	1,57		0,16	0,31	2,57	2,10	3,13

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick HLz-16DF	Annex C 20
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

²⁾ Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 125 mm: V_{Rk,c,II} = V_{Rk,b}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Clay hollow brick Porotherm Homebric

Table C49: Description of the brick

Brick type	Clay hollow hollow brick Porotherm Homebric
Bulk density $\rho [kg/dm^3]$	0,7
Compressive strength $f_b \ge [N/mm^2]$	4, 6 or 10
Code	EN 771-1
Producer (country code)	e.g. Wienerberger (FR)
Brick dimensions [mm]	500 x 200 x 299
Drilling method	Rotary

Table C50: Installation parameters

Anchor size			All sizes
Edge distance c _{cr}		[mm]	100 (120) ¹⁾
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Specing	S _{cr,II}	[mm]	500
Spacing	S _{cr,⊥}	[mm]	299
Minimum spacing	S _{min}	[mm]	100

¹⁾ Value in brackets for SH20x85 and SH20x130

Table C51: Group factor for anchor group in case of tension loading

Configura	Configuration with c ≥ with s ≥		with s ≥			
II: anchors placed parallel to horizontal		200	100			2,0
joint		C _{cr}	500	α _{g,N,II}	r 1	2,0
⊥: anchors placed		200	100		[-]	1,2
perpendicular to horizontal joint		C _{cr}	299	$\alpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Porotherm Homebric	Annex C 21
Description of the brick	
Installation parameters	

²⁾ For V_{Rk,c}: c_{min} according to Technical Report TR 054

Brick type: Clay silicate hollow brick Porotherm Homebric

Table C52: Group factor for anchor group in case of shear loading parallel to free edge

Configura	ation	with c≥	with s ≥			
II: anchors placed parallel to horizontal joint	V	C _{Cr}	500	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	299	$\alpha_{g,V,\perp}$	[-]	2,0

Table C53: Group factor for anchor group in case of shear loading perpendicular to free edge

Configura	Configuration with c ≥		with s ≥			
II: anchors placed parallel to horizontal joint	V-•••	C _{cr}	500	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{Cr}	299	$\alpha_{g,V,\perp}$	[-]	2,0

Table C54: Characteristic values of resistance under tension and shear loads

ature

Values are valid for c_{cr} and c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Porotherm Homebric	Annex C 22
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 200 mm: V_{Rk,c,II} = V_{Rk,b}

Brick type: Clay silicate hollow brick Porotherm Homebric

Table C55: Characteristic values of resistance under tension and shear loads (continue)

			cteristic resis	tance				
			Use category					
		Effective		d/d		d/d		
		anchorage		w/d		w/d		
Anchor size	Sleeve	depth		w/w		w/w		
7 110/10/10/20		'	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{-1}$			$V_{Rk,b}^{(2)3)}$		
		[mm]		[kN]				
		Compressive	strength f _b ≥	: 10 N/mm ²	<u> </u>			
M8	12x80	80	1,2	1,2	1,2	3,0		
MO / M10/ IC MC	16x85	85	1,2	1,2	1,2	3,0		
M8 / M10/ IG-M6	16x130	130	1,5	1,5	1,5	3,5		
M12 / M16 /	20x85	85	1,2	1,2	1,2	4,0		
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,5	4,0		

Values are valid for c_{cr} and c_{min}

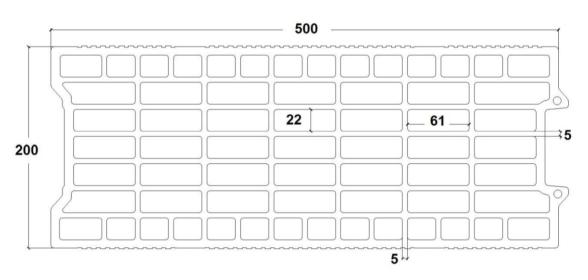
Table C56: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\boldsymbol{\omega}}}$	٧	δ_{V0}	$\delta_{V^{\infty}}$													
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]													
M8	12x80	80	0.24		0,27	0,55	0,9															
M8 / M10/	16x85	85	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	,34	0,27	0,55	0,9		
IG-M6	16x130	130	0,43	0,80	0,34	0,69	1,0	1,20	1,80													
M12/M16/	20x85	85	0,34		0,27	0,55		,	,													
IG-M8 / IG-M10	20x130	130	0,43		0,34	0,69	1,14															

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Porotherm Homebric	Annex C 23
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

²⁾ Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 200 mm: V_{Rk,c,II} = V_{Rk,b}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Clay hollow brick BGV Thermo

Table C57: Description of the brick

$ \begin{array}{lll} \mbox{Compressive strength} & f_b \geq [\mbox{N/mm}^2] & 4, 6 \mbox{ or } 10 \\ \mbox{Code} & EN 771-1 \\ \mbox{Producer (country code)} & e.g. \mbox{ Leroux (FR)} \\ \mbox{Brick dimensions} & [\mbox{mm}] & 500 \times 200 \times 314 \\ \end{array} $	Brick type	
Code EN 771-1 Producer (country code) e.g. Leroux (FR) Brick dimensions [mm] 500 x 200 x 314	Bulk density ρ [kg/dm ³]	0,6
Producer (country code) e.g. Leroux (FR) Brick dimensions [mm] 500 x 200 x 314	Compressive strength $f_b \ge [N/mm^2]$	4, 6 or 10
Brick dimensions [mm] 500 x 200 x 314	Code	EN 771-1
	Producer (country code)	e.g. Leroux (FR)
Drilling method Rotary	Brick dimensions [mm]	500 x 200 x 314
	Drilling method	Rotary

Table C58: Installation parameters

Anchor size		[-]	All sizes
Edge distance c _{cr}		[mm]	100 (120) ¹⁾
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Special	S _{cr,II}	[mm]	500
Spacing	S _{cr,⊥}	[mm]	314
Minimum spacing	S _{min}	[mm]	100

¹⁾ Value in brackets for SH20x85 and SH20x130

Table C59: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal	••	200	100			1,7
joint		C _{cr}	500	$\alpha_{g,N,II}$		2,0
⊥: anchors placed		200	100		[-]	1,1
perpendicular to horizontal joint		C _{cr}	314	$\alpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry Performances clay hollow brick BGV Thermo Description of the brick Installation parameters Annex C 24

²⁾ For V_{Rk,c}: c_{min} according to Technical Report TR 054

horizontal joint

Brick type: Clay hollow brick BGV Thermo Group factor for anchor group in case of shear loading parallel to free edge with c≥ Configuration with s ≥ II: anchors placed parallel to horizontal 500 2,0 C_{cr} $\alpha_{\text{g,V,II}}$ joint [-] ⊥: anchors placed perpendicular to 314 2,0 C_{cr} $\alpha_{\text{g},\text{V},\perp}$

Table C61: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V-•••	C _{Cr}	500	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	314	$\alpha_{g,V,\perp}$	[-]	2,0

ESSVE Injection system ONE, ONE ICE for masonry

Performances clay hollow brick BGV Thermo
Installation parameters (continue)

Annex C 25

Brick type: Clay hollow brick BGV Thermo						
Table C62:	Characteristic values of resistance under tension and shear loads					

		ce							
			Use category						
		Effective		d/d		d/d			
		anchorage		w/d w/w		w/d			
Anchor size	Sleeve	depth		w/w		w/w			
			40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{ 1)}$		V _{Rk,b} ²⁾³⁾			
		[mm]			[kN]				
Compressive strength f _b ≥ 4 N/mm ²									
M8	12x80	80	0,6	0,6	0,6	2,0			
M8 / M10/	16x85	85	0,6	0,6	0,6	2,0			
IG-M6	16x130	130	1,2	1,2	0,9	2,5			
M12 / M16 / IG-M8 /	20x85	85	0,6	0,6	0,6	2,5			
IG-M10	20x130	130	1,2	1,2	0,9	2,5			
		Compr	essive streng	th f _b ≥ 6 N/mm ²	2				
M8	12x80	80	0,9	0,9	0,75	2,5			
M8 / M10/	16x85	85	0,9	0,9	0,75	2,5			
IG-M6	16x130	130	1,5	1,5	1,2	3,0			
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,75	3,0			
IG-M10	20x130	130	1,5	1,5	1,2	3,0			
		Compre	ssive strengt	th f _b ≥ 10 N/mm	2				
M8	12x80	80	0,9	0,9	0,9	3,5			
M8 / M10/	16x85	85	0,9	0,9	0,9	3,5			
IG-M6	16x130	130	2,0	2,0	1,5	4,0			
M12 / M16 / IG-M8 /	20x85	85	0,9	0,9	0,9	4,0			
IG-M10	20x130	130	2,0	2,0	1,5	4,0			

Values are valid for c_{cr} and c_{min}

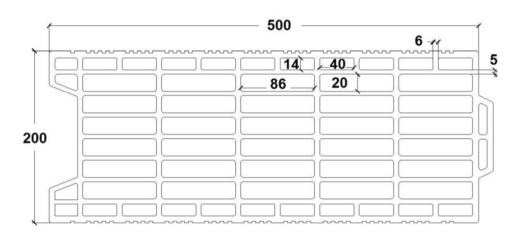
Table C63: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\omega}}$	V	$\delta_{ m V0}$	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,26		0,21	0,41	0,7	1,00	1,50
M8 / M10/	16x85	85			0,21	0,41	0,7		
IG-M6	16x130	130	0,43		0,34	0,69	0,86		
M12 / M16 / IG-M8 / IG-M10	20x85	85	0,26		0,21	0,41			
	20x130	130	0,43		0,34	0,69			

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick BGV Thermo	Annex C 26
Characteristic values of resistance under tension and shear load	
Displacements	

Valides are valid for cer and emin
 Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Clay hollow brick Calibric R+

Table C64: Description of the brick

Brick type	Clay hollow brick Calibric R+
Bulk density ρ [kg/dm³]	0,6
Compressive strength $f_b \ge [N/mm^2]$	6, 9 or 12
Code	EN 771-1
Producer (country code)	e.g. Terreal (FR)
Brick dimensions [mm]	500 x 200 x 314
Drilling method	Rotary

Table C65: Installation parameters

Anchor size		[-]	All sizes	
Edge distance	Ccr	[mm]	100 (120) ¹⁾	
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾	
Spacing	S _{cr,II}	[mm]	500	
	S _{cr,⊥}	[mm]	314	
Minimum spacing	S _{min}	[mm]	100	

Value in brackets for SH20x85 and SH20x130

Table C66: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal		175	100			1,7
joint		C _{cr}	500	$\alpha_{g,N,II}$		2,0
⊥: anchors placed		175	100	000	[-]	1,0
perpendicular to horizontal joint		C _{cr}	314	$\alpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Calibric R+	Annex C 27
Description of the brick	
Installation parameters	

²⁾ For V_{Rk,c}: c_{min} according to Technical Report TR 054

Brick type: Clay hollow brick Calibric R+

Table C67: Group factor for anchor group in case of shear loading parallel to free edge

•		•	0.	Ū		
Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V	C _{Cr}	500	$\alpha_{g,V,II}$	r.1	2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	314	$\alpha_{g,V,\perp}$	[-]	2,0

Table C68: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V-•••	C _{cr}	500	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	314	$\alpha_{g,V,\perp}$	[-]	2,0

Table C69: Characteristic values of resistance under tension and shear loads

			Characteristic resistance						
			Use category						
		Effective		d/d		d/d			
		anchorage		w/d		w/d			
Anchor size	Sleeve	depth		w/w		w/w			
Anonor size	Olcove	5.5p				For all			
			40°C/24°C	80°C/50°C	120°C/72°C	temperature			
				1)		range			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1)}$		V _{Rk,b} ²⁾³⁾			
		[mm]			[kN]				
		Compress	ive strength f	. ≥ 6 N/mm²					
M8	12x80	80	0,9	0,9	0,75	3,0			
M8 / M10/	16x85	85	0,9	0,9	0,75	4,0			
IG-M6	16x130	130	1,2	1,2	0,9	4,0			
M12 / M16 /	20x85	85	0,9	0,9	0,75	6,0			
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	6,0			
		Compress	ive strength f	≥ 9 N/mm²					
M8	12x80	80	1,2	1,2	0,9	3,5			
M8 / M10/	16x85	85	1,2	1,2	0,9	5,0			
IG-M6	16x130	130	1,5	1,5	1,2	5,0			
M12/M16/	20x85	85	1,2	1,2	0,9	7,5			
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,2	7,5			

¹⁾ Values are valid for c_{cr} and c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Calibric R+	Annex C 28
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b}

Brick type: Clay hollow brick Calibric R+

Table C70: Characteristic values of resistance under tension and shear loads (continue)

			Characteristic resistance					
			Use category					
		Effective		d/d		d/d		
		anchorage		w/d		w/d		
Anchor size	Sleeve	depth		w/w		w/w		
Anchor size	Sieeve	ССРП				For all		
			40°C/24°C	80°C/50°C	120°C/72°C	temperature		
						range		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{1} \qquad V_{Rk,b}$					
		[mm]	[kN]					
		Compressi	ive strength f _b ≥ 12 N/mm ²					
M8	12x80	80	1,2	1,2	0,9	4,0		
M8 / M10/	16x85	85	1,2	1,2	0,9	5,5		
IG-M6	16x130	130	1,5	1,5	1,2	5,5		
M12 / M16 /	20x85	85	1,2	1,2	0,9	8,5		
IG-M8 / IG-M10	20x130	130	1,5	1,5	1,2	8,5		

Values are valid for c_{cr} and c_{min}

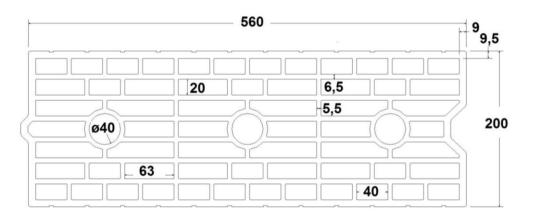
Table C71: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	$\delta_{N^{\infty}}$	V	δ_{V0}	$\delta_{V^{\infty}}$
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,34		0,27	0,55	1,0	1,10	1,65
M8 / M10/	16x85	85	0,34	0,80	0,27	0,55	2,14	2,00	3,00
IG-M6	16x130	130	0,43		0,34	0,69			
M12 / M16 / IG-M8 / IG-M10	20x85	85	0,34	, , , , ,	0,27	0,55			
	20x130	130	0,43		0,34	0,69			

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Calibric R+	Annex C 29
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Clay hollow brick Urbanbric

Table C72: Description of the brick

Brick type	Clay hollow brick Urbanbric
Bulk density $\rho [kg/dm^3]$	0,7
Compressive strength $f_b \ge [N/mm^2]$	6, 9 or 12
Code	EN 771-1
Producer (country code)	e.g. Imerys (FR)
Brick dimensions [mm]	560 x 200 x 274
Drilling method	Rotary

Table C73: Installation parameters

Anchor size		[-]	All sizes
Edge distance c _{cr}		[mm]	100 (120) ¹⁾
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Spacing	S _{cr,II}	[mm]	560
	S _{cr,⊥}	[mm]	274
Minimum spacing	S _{min}	[mm]	100

Table C74: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal		185	100	$\alpha_{g,N,II}$	[-]	1,9
joint		C _{cr}	560			2,0
⊥: anchors placed		185	100			1,1
perpendicular to horizontal joint		C _{cr}	274	$\alpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Urbanbric	Annex C 30
Description of the brick	
Installation parameters	

Value in brackets for SH20x85 and SH20x130 For V_{Rk,c}: c_{min} according to Technical Report TR 054

Brick type: Clay hollow brick Urbanbric

Table C75: Group factor for anchor group in case of shear loading parallel to free edge

Configuration		with c ≥	with s ≥					
	II: anchors placed parallel to horizontal joint	V	C _{cr}	560	$\alpha_{g,V,II}$		2,0	
	⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	274	$\alpha_{g,V,\perp}$	[-]	2,0	

Table C76: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
Comigura	tuon	WILIT C Z	WILII 5 Z			
II: anchors placed parallel to horizontal joint	V-•••	C _{cr}	560	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	274	$\alpha_{g,V,\perp}$	[-]	2,0

Table C77: Characteristic values of resistance under tension and shear loads

				Characte	ristic resistance				
	Sleeve	Effective anchorage depth	Use category						
Anchor size				d/d w/d w/w					
			40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range			
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$)	V _{Rk,b} ²⁾³⁾			
		[mm]			[kN]				
	Compressive strength f _b ≥ 6 N/mm ²								
M8	12x80	80	0,9	0,9	0,75	3,0			
M8 / M10/	16x85	85	0,9	0,9	0,75	3,0			
IG-M6	16x130	130	2,0	2,0	1,5	3,0			
M12 / M16 /	20x85	85	0,9	0,9	0,75	3,5			
IG-M8 / IG-M10	20x130	130	2,0	2,0	1,5	3,5			
		Compressive s	trength f _b ≥ 9	N/mm ²					
M8	12x80	80	0,9	0,9	0,9	4,0			
M8 / M10/	16x85	85	0,9	0,9	0,9	4,0			
IG-M6	16x130	130	2,5	2,5	2,0	4,0			
M12 / M16 /	20x85	85	0,9	0,9	0,9	4,5			
IG-M8 / IG-M10	20x130	130	2,5	2,5	2,0	4,5			

Values are valid for c_{cr} and c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Urbanbric	Annex C 31
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 190 mm: V_{Rk,c,II} = V_{Rk,b}

Brick type: Clay hollow brick Urbanbric

Table C78: Characteristic values of resistance under tension and shear loads (continue)

			Characteristic resistance					
			Use category					
		Effective		d/d		d/d		
		anchorage		w/d		w/d		
Anchor size	Sleeve	depth		w/w		w/w		
Anchor size	Sieeve	doptii	4000/0400	0000/5000	10000/7000	For all		
			40°C/24°C	80°C/50°C	120°C/72°C	temperature		
				$N_{Rk,b} = N_{Rk,p}$		range		
		h _{ef}		$V_{Rk,b}^{(2)3)}$				
		[mm]	[kN]					
		Compressive st	rength f _b ≥ 12	! N/mm²				
M8	12x80	80	1,2	1,2	0,9	4,5		
M8 / M10/	16x85	85	1,2	1,2	0,9	4,5		
IG-M6	16x130	130	3,0	3,0	2,5	4,5		
M12 / M16 /	20x85	85	1,2	1,2	0,9	5,0		
IG-M8 / IG-M10	20x130	130	3,0	3,0	2,5	5,0		

Values are valid for c_{cr} and c_{min}

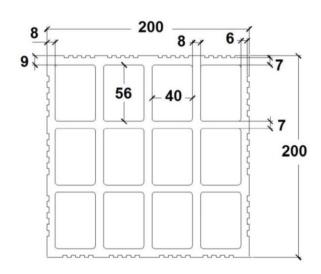
Table C79: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	٧	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0.24		0,27	0,55	1,30		
M8 / M10/	16x85	85	0,34						
IG-M6	16x130	130	0,86	0,80	0,69	1,37		1,00	1,50
M12 / M16 / IG-M8 / IG-M10	20x85	85	0,34	ĺ	0,27	0,55]	1,00
	20×130	130	0,86		0,69	1,37	1,43		

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Urbanbric	Annex C 32
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

²⁾ Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 190 mm: V_{Rk,c,II} = V_{Rk,b}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Clay hollow brick Brique creuse C40

Table C80: Description of the brick

Brick type	Clay hollow brick Brique creuse C40
Bulk density ρ [kg/dm ³]	0,7
Compressive strength $f_b \ge [N/mm^2]$	4, 8 or 12
Code	EN 771-1
Producer (country code)	e.g. Terreal (FR)
Brick dimensions [mm]	500 x 200 x 200
Drilling method	Rotary

Table C81: Installation parameters

Anchor size		[-]	All sizes
Edge distance c _{cr}		[mm]	100 (120) ¹⁾
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Specing	S _{cr,II}	[mm]	500
Spacing	S _{cr,⊥}	[mm]	200
Minimum spacing	S _{min}	[mm]	200

¹⁾ Value in brackets for SH20x85 and SH20x130

Table C82: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint		C _{cr}	200	$\alpha_{g,N,II}$.,	2,0
⊥: anchors placed perpendicular to horizontal joint		C _{cr}	200	$\alpha_{g,N,\perp}$	ניו	2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Brique creuse C40	Annex C 33
Description of the brick	
Installation parameters	

²⁾ For V_{Rk,c}: c_{min} according to Technical Report TR 054

Brick type: Clay hollow brick Brique creuse C40

Table C83: Group factor for anchor group in case of shear loading parallel to free edge

V-0.			•	_			ı
Configuration		with c ≥	with s ≥				1
II: anchors placed parallel to horizontal joint	V	C _{cr}	500	$\alpha_{g,V,II}$.	2,0	
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	200	$\alpha_{g,V,\perp}$	[-]	2,0	

Table C84: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V-•••	C _{cr}	500	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{Cr}	200	$\alpha_{g,V,\perp}$	[-]	2,0

Table C85: Characteristic values of resistance under tension and shear loads

		Vic						
			Characteristic resistance					
			Use category					
		Effective		d/d		d/d		
		anchorage		w/d		w/d		
Anaharaina	Clasus	depth		w/w		w/w		
Anchor size	Sleeve	чери				For all		
			40°C/24°C	80°C/50°C	120°C/72°C	temperature		
						range		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$)	V _{Rk,b} ²⁾³⁾		
		[mm]			[kN]	ST 100 S 24 10 10		
		Compressive st	rength f _b ≥ 4	N/mm ²		10		
M8	12x80	80	0,6	0,6	0,6	0,9		
M8 / M10/	16x85	85	0,6	0,6	0,6	0,9		
IG-M6	16x130	130	0,6	0,6	0,6	0,9		
M12 / M16 /	20x85	85	0,6	0,6	0,6	0,9		
IG-M8 / IG-M10	20x130	130	0,6	0,6	0,6	0,9		
		Compressive st	rength f _b ≥ 8	N/mm ²				
M8	12x80	80	0,9	0,9	0,75	1,2		
M8 / M10/	16x85	85	0,9	0,9	0,75	1,2		
IG-M6	16x130	130	0,9	0,9	0,75	1,2		
M12 / M16 /	20x85	85	0,9	0,9	0,75	1,2		
IG-M8 / IG-M10	20x130	130	0,9	0,9	0,75	1,2		

Values are valid for c_{cr} and c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Brique creuse C40	Annex C 34
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

²⁾ Calculation of V_{Rk,c} see Technical Report TR 054

Brick type: Clay hollow brick Brique creuse C40

Table C86: Characteristic values of resistance under tension and shear loads (continue)

			Characteristic resistance					
			Use category					
		Effective		d/d		d/d		
		anchorage		w/d		w/d		
Anchor size	Sleeve	depth		w/w				
Aliciloi Size Sieeve	Сори				For all			
			40°C/24°C	80°C/50°C	120°C/72°C	temperature		
						range		
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{1}$			$V_{Rk,b}^{2)3)}$		
		[mm]	[kN]					
		Compressive str	rength f _b ≥ 12	N/mm ²				
M8	12x80	80	1,2	1,2	0,9	1,5		
M8 / M10/	16x85	85	1,2	1,2	0,9	1,5		
IG-M6	16x130	130	1,2	1,2	0,9	1,5		
M12/M16/	20x85	85	1,2	1,2	0,9	1,5		
IG-M8 / IG-M10	20x130	130	1,2	1,2	0,9	1,5		

Values are valid for c_{cr} and c_{min}

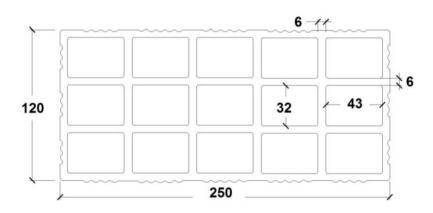
Table C87: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	12x80	80	0,17		0,14	0,27			
M8 / M10/	16x85	85	0,17		0,14	0,27			
IG-M6	16x130	130	0,14	0,80	0,11	0,23	0,3	0,9	1,35
M12 / M16 /	20x85	85	0,17		0,14	0,27	-,-	_,_	,
IG-M8 / IG-M10	20x130	130	0,14		0,11	0,23			

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Brique creuse C40	Annex C 35
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

Calculation of V_{Rk,c} see Technical Report TR 054

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Clay hollow brick Blocchi Leggeri

Table C88: Description of the brick

Brick type	Clay hollow brick Blocchi Leggeri
Bulk density ρ [kg/dm ³]	0,6
Compressive strength $f_b \ge [N/mm^2]$	4, 6, 8 or 12
Code	EN 771-1
Producer (country code)	e.g. Wienerberger (IT)
Brick dimensions [mm]	250 x 120 x 250
Drilling method	Rotary

Table C89: Installation parameters

Anchor size		[-]	All sizes			
Edge distance	C _{Cr}	[mm]	100 (120) ¹⁾			
Minimum edge distance	C _{min}	[mm]	60			
Specing	S _{cr,II}	[mm]	250			
Spacing	Scr,⊥	[mm]	120			
Minimum spacing	S _{min}	[mm]	100			

Value in brackets for SH20x85; SH20x130 and SH20x200

Table C90: Group factor for anchor group in case of tension loading

Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal		60	100			1,0
joint		C _{cr}	250	α _{g,N,II}	r1	2,0
⊥: anchors placed perpendicular to horizontal joint		60	100	$\alpha_{g,N,\perp}$	[-]	2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Blocchi Leggeri	Annex C 36
Description of the brick	
Installation parameters	

Brick type: Clay hollow brick Blocchi Leggeri

Table C91: Group factor for anchor group in case of shear loading parallel to free edge

1				-		
Configura	ation	with c ≥	with s ≥			
II: anchors placed parallel to horizontal	V	60 ¹⁾	100 ¹⁾	G-VII		1,0
joint		C _{cr}	250	- α _{g,∨,II}	.,	2,0
⊥: anchors placed		60 ¹⁾	100 ¹⁾		[-]	1,6
perpendicular to horizontal joint	· · ·	C _{cr}	250	$lpha_{g,V,\perp}$		2,0

¹⁾ Only valid for V_{Rk,b} according to Table C93 and C94 values in brackets

Table C92: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	60 ¹⁾	100 ¹⁾			1,0	
	C _{cr}	250	α _{g,V,II}		2,0	
⊥: anchors placed	\\\	60 ¹⁾	100 ¹⁾		[-]	1,6
perpendicular to horizontal joint		C _{cr}	250	$lpha_{g,V,\perp}$		2,0

¹⁾ Only valid for V_{Rk,b} according to Table C93 and C94 values in brackets

Table C93: Characteristic values of resistance under tension and shear loads

		Characteristic resistance						
		Effective	Use category					
		anchorage	d/d; w/d; w/w					
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{1}$)	V _{Rk,b} ⁴⁾		
		[mm]			[kN]			
Compressive strength f _b ≥ 4 N/mm ²								
M8	12x80	80						
M8 / M10/	16x85	85		0,4				
IG-M6	16x130	130	0.4		0.0	2,0 ²⁾ (0,9) ³⁾		
N440 / N440 /	20x85	85	0,4		0,4	0,3	2,0 7 (0,9) 7	
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVITO	20x200	200						
		Compressive stre	ength f _b ≥ 6 N	/mm²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0.5	0.5	0.4	2,5 ²⁾ (1,2) ³⁾		
N440 / N440 /	20x85	85	0,5	0,5	0,4	2,5 (1,2)		
M12/M16/	20x130	130						
IG-M8 / IG-M10	20x200	200						

Values are valid for c_{cr} and c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Blocchi Leggeri	Annex C 37
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

²⁾ Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 125 mm: V_{Rk,c,II} = V_{Rk,b}

Values in brackets $V_{Rk,c} = V_{Rk,b}$ for anchors with c_{min}

Brick type: Cla	y hollow brick Blo	cchi Leggeri		<u> </u>			
Table C94: C	haracteristic values o	of resistance un	der tension an	d shear load	s (continue)		
			Characteristic resistance				
				Use	category		
		Effective			d/d		
		anchorage			w/d		
Anchor size	Sleeve	depth		I	w/w		
Andrior size Gleeve	Ciddyd	40°C/24°C	80°C/50°C	120°C/72°C	For all temperature range		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$			
		[mm]	$N_{Rk,b} = N_{Rk,b}^{1} \qquad V_{Rk,b}^{4}$ [kN]				
		-					
		Compressive st	rength f _b ≥ 8 N	/mm²			
M8	12x80	80			0,5		
M8 / M10/	16x85	85					
IG-M6	16x130	130	0,6	0,6		3,0 ²⁾ (1,2) ³⁾	
M12/M16/	20x85	85		0,0		3,0 (1,2)	
G-M8 / IG-M10	20x130	130					
a 1010 / 10 10110	20x200	200					
	(Compressive str	ength f _b ≥ 12 N	N/mm ²			
M8	12x80	80					
M8 / M10/	16x85	85					
IG-M6	16x130	130	0,6	0.6	0.6	$3,5^{2)}(1,5)^{3)}$	
M12 / M16 /	20x85	85		0,6	0,6	3,5 (1,5)	
IG-M8 / IG-M10	20x130	130					
10-1010 / 10-10110	20x200	200					

Values are valid for c_{cr} and c_{min}

20x200

200

Table C95: Displacements

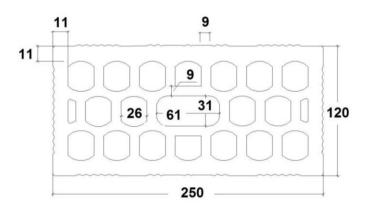
Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δγ∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
All sizes	All sizes	All sizes	0,17	1,20	0,21	0,41	0,9	1,20	1,80

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Blocchi Leggeri	Annex C 38
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 125 mm: V_{Rk,c,II} = V_{Rk,b}

Values in brackets $V_{Rk,c} = V_{Rk,b}$ for anchors with c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Clay hollow brick Doppio Uni

Table C96: Description of the brick

Brick type	Clay hollow brick Doppio Uni
Bulk density ρ [kg/dm³]	0,9
Compressive strength $f_b \ge [N/mm^2]$	10, 16, 20 or 28
Code	EN 771-1
Producer (country code)	e.g. Wienerberger (IT)
Brick dimensions [mm]	250 x 120 x 120
Drilling method	Rotary

Table C97: Installation parameters

Anchor size	Anchor size		All sizes					
Edge distance	C _{cr}	[mm]	100 (120) ¹⁾					
Minimum edge distance	C _{min} ²⁾	[mm]	60					
Spacing	S _{cr,II}	[mm]	250					
	S _{cr,⊥}	[mm]	120					
Minimum angaing	S _{min,II}	[mm]	100					
Minimum spacing	S _{min,⊥}	[mm]	120					

Value in brackets for SH20x85; SH20x130 and SH20x200

Table C98: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal	60	100			1,0	
joint		C _{cr}	250	$\alpha_{g,N,II}$	r,	2,0
⊥: anchors placed perpendicular to horizontal joint		60	120	$\alpha_{g,N,\perp}$	[-]	2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Doppio Uni	Annex C 39
Description of the brick	
Installation parameters	

²⁾ For V_{Rk,c}: c_{min} according to Technical Report TR 054

Brick type: Clay hollow brick Doppio Uni

Table C99: Group factor for anchor group in case of shear loading parallel to free edge

Configuration		with c≥	with s ≥			
II: anchors placed parallel to horizontal joint	V	\mathbf{c}_{cr}	250	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	120	$\alpha_{g,V,\perp}$	[-]	2,0

Table C100: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V-•••	C _{cr}	250	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{Cr}	120	$\alpha_{g,V,\perp}$	ניו	2,0

Table C101: Characteristic values of resistance under tension and shear loads

			Characteristic resistance					
			Use category					
		Effective			d/d			
		anchorage			w/d			
Anchor size	Sleeve	depth			w/w			
71101101 3120	0,0000					For All		
			40°C/24°C	0°C/24°C 80°C/50°C 120°C/72°C	temperature			
				1]	range		
		h _{ef}		$N_{Rk,b} = N_{Rk,p}$	(f.)	V _{Rk,b} ²⁾³⁾		
		[mm]			[kN]			
	Compressive strength f _b ≥ 10 N/mm ²							
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0,6	0,6	0,5	1,5		
M10/M16/	20x85	85	0,6	0,0		1,5		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVITO	20x200	200						
		Compressive stre	ength f _b ≥ 16 N	l/mm²				
M8	12x80	80						
M8 / M10/	16x85	85						
IG-M6	16x130	130	0.75	0.75	0.6	0.0		
NATO / NATO /	20x85	85	0,75	0,75	0,6	2,0		
M12 / M16 / IG-M8 / IG-M10	20x130	130						
IG-IVIO / IG-IVITO	20x200	200						

Values are valid for c_{cr} and c_{min}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Doppio Uni	Annex C 40
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load	

²⁾ Calculation of V_{Rk,c} see Technical Report TR 054

Brick type: Clay hollow brick Doppio Uni

Table C102: Characteristic values of resistance under tension and shear loads (continue)

			Character	istic resistance		
		Use category				
	Effective			d/d		
				w/d		
Sleeve				w/w		
Olocvo				For All		
	40°C/24°C 80°C/50°C	120°C/72°C	temperature			
					range V _{Rk,b} ²⁾³⁾	
	h _{ef}		$N_{Rk,b} = N_{Rk,p}^{-1}$			
	[mm]			[kN]		
Compressive strength f _b ≥ 20 N/mm ²						
12x80	80					
16x85	85		0.0			
16x130	130	0.0		0,75	2.0	
20x85	85	0,9	0,9		2,0	
20x130	130					
20x200	200					
	Compressive stre	ength f _b ≥ 28 N	√mm²			
12x80	80					
16x85	85			0,9		
16x130	130	1.0	1.0		0.5	
20x85	85	1,2	1,4		2,5	
20x130	130					
20x200	200					
	12x80 16x85 16x130 20x85 20x130 20x200 12x80 16x85 16x130 20x85 20x130	h _{ef} [mm]	Sleeve $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sleeve \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$Sleeve \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

Values are valid for c_{cr} and c_{min}

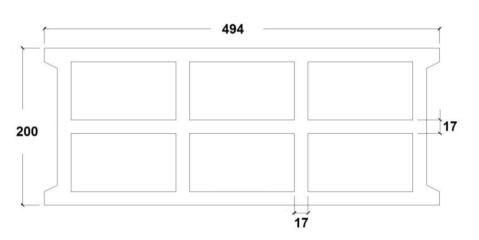
Table C103: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ∨∞
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
All sizes	All sizes	All sizes	0,26	1,20	0,31	0,62	0,6	0,3	0,45

ESSVE Injection system ONE, ONE ICE for masonry	
Performances clay hollow brick Doppio Uni	Annex C 41
Characteristic values of resistance under tension and shear load (continue)	
Displacements	

²⁾ Calculation of V_{Rk,c} see Technical Report TR 054

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8



Brick type: Hollow Light weight concrete Bloc creux B40

Table C104: Description of the brick

Brick type	Hollow light weight concrete Bloc creux B40
Bulk density ρ [kg/dm ³]	0,8
Compressive strength $f_b \ge [N/mm^2]$	4
Code	EN 771-3
Producer (country code)	e.g. Sepa (FR)
Brick dimensions [mm]	494 x 200 x 190
Drilling method	Rotary

Table C105: Installation parameters

Anchor size			All sizes
Edge distance c _{cr}		[mm]	100 (120) ¹⁾
Minimum edge distance	C _{min} ²⁾	[mm]	100 (120) ¹⁾
Specing	S _{cr,II}	[mm]	494
Spacing	S _{cr,⊥}	[mm]	190
Minimum spacing s _{min}		[mm]	100

Table C106: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint		100	100	~		1,5
		C _{cr}	494	$\alpha_{g,N,II}$	[-]	2,0
⊥: anchors placed	cular to	100	100			1,0
perpendicular to horizontal joint		C _{cr}	190	$\alpha_{g,N,\perp}$		2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances hollow light weight concrete Bloc creux B40	Annex C 42
Description of the brick	
Installation parameters	

Value in brackets for SH20x85 and SH20x130 For $V_{\text{Rk,c}}$: c_{min} according to Technical Report TR 054

Brick type: Hollow Light weight concrete Bloc creux B40

Table C107: Group factor for anchor group in case of shear loading parallel to free edge

Configuration		with c ≥ with s ≥				
II: anchors placed parallel to horizontal	V	50	100	Q . V.		1,1
joint		C _{cr}	494	$\alpha_{g,V,II}$		2,0
⊥: anchors placed	V	100	100		[-]	1,1
perpendicular to horizontal joint		C _{cr}	190	$\alpha_{g,V,\perp}$		2,0

Table C108: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed parallel to horizontal joint	V-•••	\mathbf{c}_{cr}	494	$\alpha_{g,V,II}$	r.1	2,0
⊥: anchors placed perpendicular to horizontal joint	V	C _{cr}	190	$\alpha_{g,V,\perp}$	[-]	2,0

Table C109: Characteristic values of resistance under tension and shear loads

			Characteristic resistance									
			Use category									
		Effective					w/d		d/d			
		anchorage		d/d			w/w		w/d			
Anchor size	Sleeve	depth							w/w			
Anchor Size	Sieeve	dopin							For all			
			40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C	80°C/50°C	120°C/72°C	temperature			
									range			
		h _{ef}	$N_{Rk,b} = N_{Rk,p}^{1)}$			١	$V_{Rk,b}^{2)3)}$					
		[mm]				[kN]						
			Compre	essive stre	ngth f _b ≥ 4	N/mm ²						
M8	12x80	80	1,2	0,9	0,75	0,9	0,9	0,75	3,0			
M8 / M10/	16x85	85	1,2	0,9	0,75	1,2	0,9	0,75	3,0			
IG-M6	16x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0			
M12 / M16 /	20x85	85	1,2	0,9	0,75	1,2	0,9	0,75	3,0			
IG-M8 / IG-M10	20x130	130	1,2	0,9	0,75	1,2	0,9	0,75	3,0			

Values are valid for c_{cr} and c_{min}

Table C110: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ _{V∞}
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
All sizes	All sizes	All sizes	0,34	0,90	0,31	0,62	0,86	0,9	1,35

ESSVE Injection system ONE, ONE ICE for masonry	
Performances hollow light weight concrete brick Bloc creux B40	Annex C 43
Installation parameters (continue)	
Characteristic values of resistance under tension and shear load / Displacements	

Calculation of V_{Rk,c} see Technical Report TR 054, except for shear load parallel to free edge with c ≥ 250 mm: V_{Rk,c,II} = V_{Rk,b}

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8

Brick type: Solid light weight concrete brick - LAC

Table C111: Description of the brick

Brick type	Solid light weight concrete brick
Bulk density ρ [kg/dm ³]	0,6
Compressive strength $f_b \ge [N/mm^2]$	2
Code	EN 771-3
Producer (country code)	e.g. Bisotherm (DE)
Brick dimensions [mm]	300 x 123 x 248
Drilling method	Rotary

Table C112: Installation parameter

Anchor size			All sizes
Edge distance	C _{cr}	[mm]	1,5*h _{ef}
Minimum edge distance	C _{min}	[mm]	60
Spacing	Scr	[mm]	3*h _{ef}
Minimum spacing	S _{min}	[mm]	120

Table C113: Group factor for anchor group in case of tension loading

Configuration		with c ≥	with s ≥			
II: anchors placed		90	120			1,1
parallel to horizontal joint		1,5*hef	3*h _{ef}	$\alpha_{g,N,II}$.,	2,0
⊥: anchors placed		124	120		[-]	1,1
perpendicular to horizontal joint		1,5*hef	3*h _{ef}	$\alpha_{g,N,\perp}$		2,0

Table C114: Group factor for anchor group in case of shear loading parallel to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed		60	120			0,6
parallel to horizontal joint	V	90	120	$\alpha_{g,V,II}$		2,0
⊥: anchors placed		60	120		[-]	0,6
perpendicular to horizontal joint	V	124	120	$lpha_{g,V,\perp}$		2,0

Table C115: Group factor for anchor group in case of shear loading perpendicular to free edge

Configuration		with c ≥	with s ≥			
II: anchors placed		60	120		[-]	0,6
parallel to horizontal joint	V	90	120	$\alpha_{g,V,II}$		2,0
⊥: anchors placed perpendicular to horizontal joint	V	60	120			0,6
		1,5*hef	120	$\alpha_{g,V,\perp}$		1,0
		1,5*hef	3*h _{ef}			2,0

ESSVE Injection system ONE, ONE ICE for masonry	
Performances solid light weight concrete brick - LAC	Annex C 44
Description of the brick	
Installation parameters	

Brick type: Solid light weight concrete brick - LAC

Table C116: Characteristic values of resistance under tension and shear loads

		Effective anchorage	Use category								
Arrahar			d/d				w/d w/w	d/d w/d w/w			
Anchor size	Sleeve	depth	40°C/24°C	80°C/50°C	120°C/72°C	40°C/24°C 80°C/50°C 120°C/		120°C/72°C	For all temperature range		
	h_{ef} $N_{Rk,b} = N_{Rk,D}^{-1}$ $N_{Rk,b} = N_{Rk,D}^{-1}$		1) p	V _{Rk,b} ²⁾³⁾							
	[mm] [kN]										
			Con	pressive s	trength f _b ≥	2 N/mm ²					
M8	-	80	3,0	2,5	2,0	2,5	2,0	1,5	3,0		
M8 / M10/ IG-M6	-	90	3,0	3,0	2,0	2,5	2,5	2,0	3,0		
M10 / IG-M8	-	100	3,5	3,0	2,5	3,0	2,5	2,0	3,0		
M16 / IG-M10	-	100	3,0	3,0	2,0	3,0	3,0	2,0	3,0		
M8	12x80	80	2,5	2,5	2,0	2,5	2,0	1,5	3,0		
M8 / M10/	16x85	85	3,0	2,5	2,0	3,0	2,5	2,0	3,0		
IG-M6	16x130	130	3,0	2,5	2,0	3,0	2,5	2,0	3,0		
M12 / M16	20x85	85	2,5	2,5	2,0	2,5	2,5	2,0	3,0		
/ IG-M8 /	20x130	130	2,5	2,5	2,0	2,5	2,5	2,0	3,0		
IG-M10	20x200	200	2,5	2,5	2,0	2,5	2,5	2,0	3,0		

Values are valid for c_{cr}, values in brackets are valid for single anchors with c_{min}

Table C117: Displacements

Anchor size	Sleeve	Effective anchorage depth h _{ef}	N	δ _N / N	δ_{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V^{\infty}}$
		[mm]	[kN]	[mm/kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8	-	80							
M8 / M10/ IG-M6	-	90	0,86	0,50	0,43	0,86			
M10 / IG-M8	-	100	1,00	0.05	0,35	0,70	0,9	0,25	0,38
M16 / IG-M10	-	100	0,86	0,35	0,30	0,60			
M8	12x80	80		0,50	0,36	0,71			
M8 / M10/	16x85	85	1 [
IG-M6	16x130	130	0.71						
	20x85	85	0,71	0,35	0,25	0,50			
M12 / M16 / IG-M8 / IG-M10	20x130	130							
IG-IVIO / IG-IVITO	20x200	200							

ESSVE Injection system ONE, ONE ICE for masonry	
Performances solid light weight concrete brick - LAC	Annex C 45
Characteristic values of resistance under tension and shear load	
Displacements	

For calculation of V_{Rk,c} see ETAG029, Annex C

The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply $V_{Rk,b}$ by 0,8