

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-05/0069 of 3 July 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer Bolt Anchor FAZ II

Torque controlled expansion anchor for use in concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

18 pages including 3 annexes

European Assessment Document (EAD) 330232-00-0601

ETA-05/0069 issued on 5 August 2016

European Technical Assessment ETA-05/0069

Page 2 of 18 | 3 July 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z22305.17 8.06.01-272/16

European Technical Assessment ETA-05/0069

English translation prepared by DIBt

Page 3 of 18 | 3 July 2017

Specific Part

1 Technical description of the product

The fischer Bolt Anchor FAZ II is an anchor made of galvanised steel (FAZ II) or made of stainless steel (FAZ II A4) or high corrosion resistant steel (FAZ II C) which is placed into a drilled hole and anchored by torque-controlled expansion.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for static and quasi static action	See Annex C 1 and C 2
Characteristic resistance for seismic performance categories C1 and C2	See Annex C 4
Displacements	See Annex C 5

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic resistance under fire exposure	See Annex C 3

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD 330232-00-0601, the applicable European legal act is: [96/582/EC]. The system to be applied is: 1

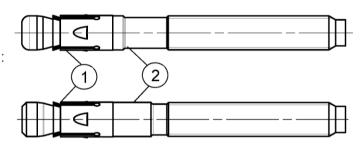
Z22305.17 8.06.01-272/16

European Technical Assessment ETA-05/0069 English translation prepared by DIBt

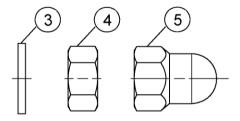
Page 4 of 18 | 3 July 2017

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

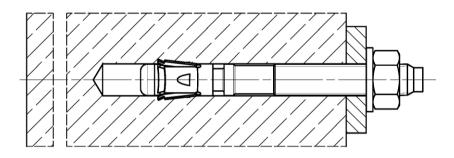
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

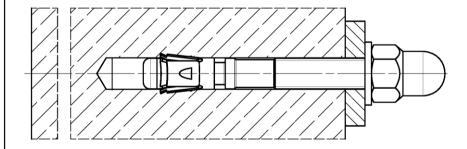

Issued in Berlin on 3 July 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department


beglaubigt: Lange

Z22305.17 8.06.01-272/16


Cone bolt manufactured by cold - forming:



Cone bolt manufactured by turning:

- ① Expansion sleeve
- ② Cone bolt (cold formed or turned)
- 3 Washer
- 4 Hexagon nut
- 5 fischer FAZ II dome nut

(Fig. not to scaled)

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

Product description Installed condition Annex A 1

electronic copy of the eta by dibt: eta-05/0069

Product label and letter-code:

FAZ II: carbon steel, galvanized

FAZ II A4: stainless steel

FAZ II C: high corrosion resistant steel

Table A2.1: Letter - code at marking area 1:

Marking		(a)	(b)	(c)	(d)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(l)	(K)
Max. t _{fix}		5	10	15	20	5	10	15	20	25	30	35	40	45	50
	M6			-		45	50	55	60	65	70	75	80	85	90
	M8	40	45		-	50	55	60	65	70	75	80	85	90	95
	M10	45	50	55	60	65	70	75	80	85	90	95	100	105	110
B ≥ [mm]	M12	55	60	65	70	75	80	85	90	95	100	105	110	115	120
	M16	70	75	80	85	90	95	100	105	110	115	120	125	130	135
	M20					105	110	115	120	125	130	135	140	145	150
	M24			-		130	135	140	145	150	155	160	165	170	175

Marking		(L)	(M)	(N)	(O)	(P)	(R)	(S)	(T)	(U)	(V)	(W)	(X)	(Y)	(Z)
Max. t _{fix}		60	70	80	90	100	120	140	160	180	200	250	300	350	400
	M6	100	110	120	130	140	160	180	200	220	240	290	340	390	440
	M8	105	115	125	135	145	165	185	205	225	245	295	345	395	445
	M10	120	130	140	150	160	180	200	220	240	260	310	360	410	460
B ≥ [mm]	M12	130	140	150	160	170	190	210	230	250	270	320	370	420	470
	M16	145	155	165	175	185	205	225	245	265	285	335	385	435	485
	M20	160	170	180	190	200	220	240	260	280	300	350	400	450	500
	M24	185	195	205	215	225	245	265	285	305	325	375	425	475	525

Calculation existing her for installed fasteners:

existing $h_{ef} = B_{(according to table A2.1)} - existing t_{fix}$

Thickness of the fixture t_{fix} including thickness of fastener plate t and e.g. thickness of grout layer t_{grout} or other non-structural layers

(Fig. not to scaled)

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

Product description

Product label and letter code

Annex A 2

Product dimensions

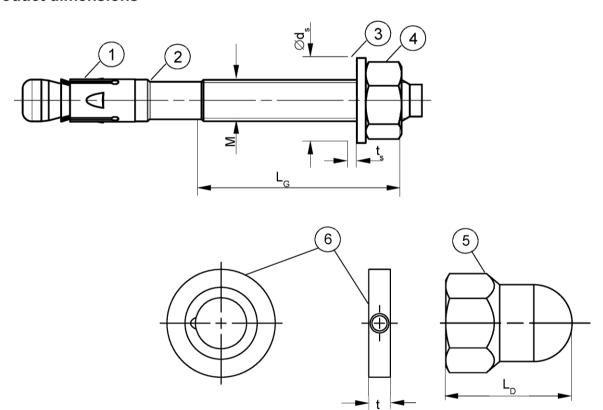


Table A3.1: Dimensions [mm]

Part	Designation				FAZ II, FAZ II A4, FAZ II C									
Fait	Tt Designation			М6	M8	M10	M12	M16	M20	M24				
1	Expansion sleeve	Sheet thickness		0,8	1,3	1,4	1,6	2,4	4	3,0				
2	Cono holt	Thread	size M	6	8	10	12	16	20	24				
	2 Cone bolt			10	19	26	31	40	50	57				
3	Washer	ts	≥	1,4		1,8	2,3	2,7		3,7				
3	vvasilei	$\emptyset d_s$		11	15	19	23	29	36	43				
4 & 5	Hexagon nut / fischer FAZ II	Wrencl	n size	10	13	17	19	24	30	36				
5	dome nut	L _D	≥		-	22	27	33		-				
6	fischer filling disc FFD	t	=	·	6			7	8	10				

(Fig. not to scaled)

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Product description Dimensions	Annex A 3

electronic copy of the eta by dibt: eta-05/0069

English translation prepared by DIBt

Specifications of intended use Anchorages subject to: FAZ II, FAZ II A4, FAZ II C Size **M6 M8** M12 M20 **M24** M10 M16 Static and quasi-static loads Cracked and uncracked concrete Fire exposure C1 Seismic performance / C2¹⁾ category 1

Base materials:

- Reinforced and unreinforced normal weight concrete (cracked and uncracked) according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Use conditions (Environmental conditions):

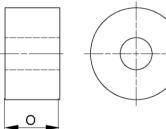
- Structures subject to dry internal conditions (FAZ II, FAZ II A4, FAZ II C)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (FAZ II A4, FAZ II C)
- Structures subject to external atmospheric exposure and permanently damp internal condition, if other particular aggressive conditions exist (FAZ II C)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used)

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or
 to supports, etc.)
- Design of fastenings according to FprEN 1992-4: 2016 and EOTA Technical Report TR 055
- For effective embedment depth h_{ef} < 40 mm and $h_{min} \ge 80$ mm and < 100 mm only statically indeterminate fixings (e.g. light-weight suspended ceilings with internal exposure) are covered by the ETA

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Intended Use Specifications	Annex B 1


¹⁾ FAZ II C: Only valid for cold-formed version (according to Annex A1)

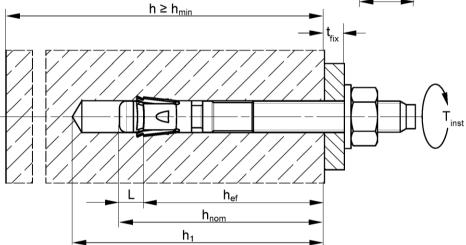

electronic copy of the eta by dibt: eta-05/0069

Table 22111 metamation parameters										
Size			FAZ II, FAZ II A4, FAZ II C							
Size			М6	M8	M10	M12	M16	M20	M24	
Nominal drill hole diameter	$d_0 =$		6	8	10	12	16	20	24	
Maximum bit diameter with hammer or hollow drilling	d	[mm]	6,40	8,45	10.45	12,5	16,5	20,55	24,55	
Maximum bit diameter with diamond drilling	d _{cut,max}		1	8,15	10,45	12,25	16,45	20,50	24,40	
	$h_{nom} \geq$		46,5	44,5	52,0	63,5	82,5	120	148,5	
Overall fastener embedment depth in the concrete	(L)		(6,5)	(9,5)	(12)	(13,5)	(17,5)	(20)	(23,5)	
Concrete		[mm]		-	Existin	g h _{ef} + L	= h _{nom}	-		
Depth of drill hole to deepest point	$h_1 \geq$				$h_{nom} + 5$			h _{nom}	+ 10	
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	7	9	12	14	18	22	26	
Required setting torque	T _{inst} =	[Nm]	8	20	45	60	110	200	270	
Excess length after hammering-in the cone bolt (for fischer dome nut applications according to Annex B6)	O =	[mm]		-	12	16	20			

Setting gauge FAZ II SL-H for anchor with fischer FAZ II dome nut:

Effective embedment depth

Thickness of the fixture

Depth of drill hole to deepest point

Thickness of the concrete member Minimum thickness of concrete member

Overall fastener embedment depth in the concrete

T_{inst} = Required setting torque

(Fig. not to scaled)

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C Annex B 2 **Intended Use** Installation parameters

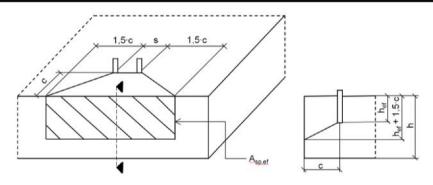
Table B3.1: Minimum thickness of concrete members, minimum spacing and minimum edge distance

diotarioo												
Size			FAZ II, FAZ II A4, FAZ II C									
Size		M6	M8	M10	M12	M16	M20	M24				
Minimum edge distance												
Uncracked concrete	— C _{min}	45	40	45	55	65	95	135				
Cracked concrete	— Omin	70	40	43	33		85	100				
Minimum spacing	s _{min} [mm			acco	rding to A	nnex B4						
Minimum thickness of concrete member	h _{min}		80		100	140	160	200				
Thickness of concrete member	ckness of concrete member h ≥			max. $\{h_{min}; h_1^{(1)} + 30\}$ max. $\{h_{min}; h_1^{(1)} + 2 \cdot d\}$								
Minimum spacing												
Uncracked concrete	c .	35	40	40	50	65	95	100				
Cracked concrete	— S _{min}	33	35	1 40	30	05	95	100				
Minimum edge distance	c _{min} [mm]			acco	ding to Annex B4							
Minimum thickness of concrete member	h _{min}		80		100	140	160	200				
Thickness of concrete member	h≥		max. {h _m	_{in} ; h ₁ ¹⁾ + 3	0}	max. {	h _{min} ; h ₁ ¹⁾ +	- 2 · d _o }				
Minimal splitting area												
Uncracked concrete	_ _^ [·1000	5,1	18	37	54	67	100	117,5				
Cracked concrete	— A _{sp,req} mm²	1,5	12	27	40	50	77	87,5				

¹⁾ h₁ according to Annex B2

Splitting failure applied for minimum edge distance and spacing in dependence of the hef

For the calculation of minimum spacing and minimum edge distance of anchors in combination with different embedment depths and thicknesses of concrete members the following equation shall be fulfilled:


$$A_{sp,req} < A_{sp,ef}$$

 $A_{sp,req}$ = required splitting area $A_{sp,ef}$ = effective splitting area (according to Annex B4)

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Intended Use Minimum thickness of member, minimum spacing and edge distance	Annex B 3

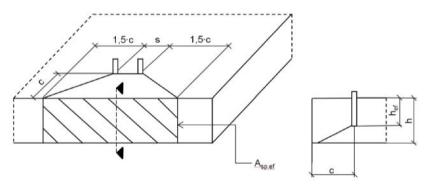


Table B4.1: Effective splitting area $A_{sp,ef}$ with member thickness $h > h_{ef} + 1.5 \cdot c$ and $h \ge h_{min}$

Single anchor and group of anchors with s > 3 · c	$A_{sp,ef} = (6 \cdot c) \cdot (h_{ef} + 1,5 \cdot c)$	[mm²]	with c ≥ c _{min}
Group of anchors with s ≤ 3 · c	$A_{sp,ef} = (3 \cdot c + s) \cdot (h_{ef} + 1.5 \cdot c)$	[mm²]	with $c \ge c_{min}$ and $s \ge s_{min}$

Table B4.2: Effective splitting area $A_{sp,ef}$ with member thickness $h \le h_{ef} + 1.5 \cdot c$ and $h \ge h_{min}$

Single anchor and group of anchors with s > 3 · c	$A_{sp,ef} = 6 \cdot c \cdot existing h$	[mm²]	with c ≥ c _{min}
Group of anchors with s ≤ 3 · c	$A_{sp.ef} = (3 \cdot c + s) \cdot existing h$	[mm²]	with c ≥ c _{min} and s ≥ s _{min}

Edge distance and axial spacing shall be rounded to at least 5 mm

(Fig. not to scaled)

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Intended Use Minimum thickness of member, minimum spacings and edge distances	Annex B 4

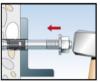
electronic copy of the eta by dibt: eta-05/0069

Installation instructions:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor Exception: fischer FAZ II dome nut.
- Checking before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids
- Hammer, hollow or diamond drilling according to Annex B5
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller
 distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is
 not in the direction of load application
- · It must be ensured that in case of fire local spalling of the concrete cover does not occur
- · Fastenings in stand-off installation or with a grout layer under seismic action are not covered
- In case of seismic applications the fastener shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure

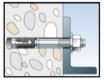
Installation instructions: Drilling and cleaning the hole

Types of drills and cleaning


Hammer drill	B4444000000	1: Drill the hole	2: Clean the hole
Hollow drill		1: Drill the hole with automatic cleaning	-
Diamond drill, for non seismic applications only and ≥ drill Ø 8		1: Drill the hole	2: Clean the hole

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Intended Use Installation instructions	Annex B 5

Installation instructions: Installation of the anchor


HEXAGON NUT:

3: Set the fastener

4: Apply Tinst

5: Installed fastener

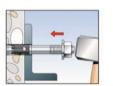
fischer FAZ II DOME NUT:

Option 1: Push through installation with setting gauge SL-H:

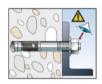
 Set the fastener using setting gauge

4: Check offset

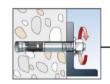
5: Turn on the washer and fischer FAZ II dome nut



6: Apply Tinst



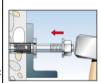
7: Installed fastener

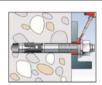

Option 2: Push through installation with hexagon nut:

Set the fastener

4: check setting position: Visible one turn of a thread

4.1: Remove nut


fischer FILLING DISC FFD optional for seismic C2 application or minimizing the annular gap:


Optional

The gap between bolt and fixture may be filled with mortar (compressive strength ≥ 50 N/mm² e.g. FIS SB) after step 7 (for eliminating the annular gap).

The filling disc is additional to the standard washer.

The thickness of the filling disc must be considered for definition of t_{fix} Countersunk of the filling disc in direction to the anchor plate.

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

Intended Use

Installation instructions

Annex B 6

Size					F	AZ II, F	AZ II A4	, FAZ II	С	
			M6	M	3	M10	M12	M16	M20	M24
Steel failure										
Characteristic resistance FAZ II	- N _{Rk,s}	[kN]	7,6	16	,6	28,3	43,2	67,0	123,3	176,7
FAZ II A4/C		[[(,1)]	11,4	17	,0	29,0	44,3	70,6	124,9	183,6
Partial factor for steel failure	1) γ _{Ms}	[-]					1,5			
Pullout failure										
Effective embedment depth for calculation	h_{ef}	[mm]	40	35 - < 45	45	40 - 60	50 - 70	65 - 85	100	125
Characteristic resistance in cracked concrete C20/25	N	[LN]	1,5	5,5	8	13	20		_ 2)	
Characteristic resistance in uncracked concrete C20/25	$$ $N_{Rk,p}$	[kN]	10,5	14	ļ	20	22	<u>-</u> -/		
		C25/30					1,12			
	Ψc -	C30/37	1,22							
Increasing factors for N _{Rk,p} for		C35/45		1,32						
cracked and uncracked concrete		C40/50	1,41							
		C45/55	1,50							
		C50/60					1,58			
Installation sensitivity factor	γinst	[-]					1,0			
Concrete cone and splitting failure							3/			
Factor for uncracked concrete	$k_1 = k_{ucr,N}$	[-]					11,0 ³⁾			
Factor for cracked concrete	$k_1 = k_{cr,N}$		7,73)							
Characteristic spacing	S _{cr,N}	[mm]	3 · h _{ef}							
Characteristic edge distance	C _{cr,N}						1,5 · h _{ef}			
Spacing	S _{cr,sp}						2 · c _{cr,sp}			
Edge distance for h = 80				2,4·	h _{ef}	2·h _{ef}	-			
Edge distance for h = 100						2,4·h _{ef}	2·h _{ef}		-	
Edge distance for h = 120	- C _{cr,sp}	[mm]	40				2,1·h _{ef}			
Edge distance for h = 140	ocr,sp -			2·h	ef	1,9·h _{ef}				-
Edge distance for h = 160						i, o lief	$1,5 \cdot h_{ef}$	$2 \cdot h_{ef}$	2,4·h _{ef} -	-
Edge distance for h = 200	_								∠,4'∏ _{ef}	$2,2 \cdot h_{ef}$

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Performances Characteristic values of resistance under tension loads	Annex C 1

¹⁾ In absence of other national regulations 2) Pullout failure not relevant 3) Based on concrete strength as cylinder strength

Table C2.1: Characteristic values of shear resistance under static and quasi-static action										
0:					F.A	Z II, FA	Z II A4	, FAZ II	I C	
Size				M6	M8	M10	M12	M16	M20	M24
Steel failure without lever arm										
Characteristic resistance F	AZ II	V ₂ ,	[kN]	5,9	13,6	21,4	30,6	55,0	81,4	110,1
F	AZ II A4/C	V Rk,s	[KIV]	8,8	16,8	26,5	38,3	69,8	106,3	148,5
Partial factor for steel failure	$\gamma_{Ms}^{}1)}$	r 1		1,25						
Factor for ductility		k_7	[-]				1,0			
Steel failure with lever arm and C	Concrete pryou	t failur	е							
Effective embedment depth for cal	h_{ef}	[mm]	40	45	60	70	85	100	125	
Characteristic banding resistance	FAZ II	N 4 ⁰	[Nm]	11,4	26	52	92	233	513	865
Characteristic bending resistance	FAZ II A4/C	IVI Rk,s		10,7	29	59	100	256	519	898
Factor for pryout failure		k ₈	[-]	2,6	2,8	3,2 3,		3,0	2,6	2,4
Effective embedment depth for calc	culation	h	[mm]		35 -	40 -	50 -	65 -		
		' 'et	[]		< 45	< 60	< 70	< 85		
Characteristic bending resistance	FAZ II	${\sf M^0}_{\sf Rk,s}$	[Mm]	-	20	44	92	184		-
Characteristic bending resistance	FAZ II A4/C	IVI RK,S	[.4]		21	45	100	193		
Factor for pryout failure		k_8	[-]		2,5	2,6	3,1	3,2		
Partial factor for steel failure		$\gamma_{Ms}^{-1)}$					1,25			
Factor for ductility	k_7	[-]				1,0				
Concrete edge failure										
Effective embedment depth for cald	culation	$I_f =$	[mm]				h_{ef}			
Outside diameter of a fastener		d _{nom}	•	6	8	10	12	16	20	24

1) In absence of other national regulation	1) In	absence	of other	national	regulation
--	-------	---------	----------	----------	------------

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Performances Characteristic values of resistance under shear loads	Annex C 2

Table C3.1: Characteristic values of tension resistance under fire exposure										
Cino		FAZ II, FAZ II A4, FAZ II C								
Size				М6	M8	M10	M12	M16	M20	M24
		h _{ef} ≥	[mm]	40	35 / 45	40 / 60	50 / 70	65 / 85	100	125
Observant and all a		R30		$0.6^{1)} / 0.9^{2)}$	1,4	2,8	5,0	9,4	14,7	21,1
Characteristic	$N_{Rk,s,fi}$ -	R60		$0,4^{1)} / 0,9^{2)}$	1,2	2,3	4,1	7,7	12,0	17,3
resistance steel failure		R90		$0.3^{1)} / 0.9^{2)}$	0,9	1,9	3,2	6,0	9,4	13,5
Steer failure		R120		$0,2^{1)} / 0,7^{2)}$	0,8	1,6	2,8	5,2	8,1	11,6
Characteristic resistance	N _{Rk.c.fi}	R30 - R90	[kN]	7,7 · h _{ef} ^{1,5} · (20) ^{0,5} · h _{ef} / 200 / 1000						
Concrete cone failure	1111,0,11	R120			7,7 · h _e	_f ^{1,5} · (20) ^{0,1}	⁵ · h _{ef} / 20	0 / 1000 · 0	,8	
Ob a wa ata wiati -		R30			0,9 / 2,0					
Characteristic	NI -	R60		0,4	0,8 / 2,0	2,2 / 3,3	3,0 / 5,0	4,5 / 6,8	8,6	12,0
resistance	$N_{Rk,p,fi}$ -	R90			0,5 / 2,0					l
pullout failure	_	R120		0.3	03/16	17/26	24/40	36/54	6.9	9.6

Table C3.2: Characteristic values of shear resistance under fire exposure

Size			R3	0	R60		
FAZ II, FAZ II A4, FAZ II C			$V_{Rk,s,fi,30}[kN]$	$M^0_{Rk,s,fi,30}[Nm]$	$V_{Rk,s,fi,60}$ [kN]	$M^0_{Rk,s,fi,60}$ [Nm]	
M6		40	$0,6^{1)}/0,9^{2)}$	$0.5^{1)}/0.2^{2)}$	$0,4^{1)}/0,9^{2)}$	$0,3^{1)}/0,1^{2)}$	
M8		35	1,8	1,4	1,6	1,2	
M10		40	3,	6	2,9	3,0	
M12	h _{ef} ≥	50	6,3	7,8	4,9	6,4	
M16		65	11,7	19,9	9,1	16,3	
M20		100	18,2	39,0	14,2	31,8	
M24		125	26,3	67,3	20,5	55,0	

Size			R9	0	R120		
FAZ II, FAZ II A4, FAZ II C			$V_{Rk,s,fi,90}$ [kN]	$M^{0}_{Rk,s,fi,90}\left[Nm\right]$	$V_{Rk,s,fi,120}[kN]$	M ⁰ _{Rk,s,fi,120} [Nm]	
M6		40	$0,3^{1)}/0,9^{2)}$	$0,2^{1)}/0,1^{2)}$	$0,2^{1)}/0,7^{2)}$	$0,2^{1)}/0,1^{2)}$	
M8		35	1,3	1,0	1,2	0,8	
M10		40	2,2	2,4	1,9	2,1	
M12	h _{ef} ≥	50	3,5	5,0	2,8	4,3	
M16		65	6,6	12,6	5,3	11,0	
M20		100	10,3	24,6	8,3	21,4	
M24		125	14,8	42,6	11,9	37,0	

Concrete pryout failure according to EN 1992-4

Table C3.3: Minimum spacings and minimum edge distances of anchors under **fire exposure** for **tension** and **shear** load

Size			Annex B3									
Size		М6	M8	M10	M12	M16	6 M20 M24					
Spacing	S _{min}					Annex E	33					
Edge distance	0	[mm]										
Edge distance	C _{min}			for fire ex	cposure fror	m more tha	n one side	c _{min} ≥ 300	mm			
1)												

¹⁾ FAZ II gvz

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

Performances

Characteristic values of resistance under fire exposure

Annex C 3

²⁾ FAZ II A4 / C

I	Table C4.1: Characteristic values of tension and shear resistance under seismic action
I	category C1

			FAZ II, FAZ II A4, FAZ II C							
Size			М6	M8	M10	M12	M16	M20 394	M24	
Length of anchor	L_{max}			167	186	221	285	394	477	
Effective embedment depth	h _{ef}	[mm]	-	45	40 - 60	50 - 70	65 - 85	100	125	
Steel failure										
Characteristic resistance tension load C1	$N_{Rk,s,C1}$	[kN]		16,0	27,0	41,0	66,0	111,0	150,0	
Partial factor for steel failure	γ _{Ms,C1}	[-]	-	1,5						
Pullout failure										
Characteristic resistance tension load in cracked concrete C1	$N_{Rk,p,C1}$	[kN]	_	4,6	8,0	16,0	28,2	36,0	50,3	
Installation sensitivity factor	γinst	[-]				1,	0			
Steel failure without lever arm										
Characteristic resistance shear load C1	$V_{Rk,s,C1}$	[kN]		11	17	27	47	56	69	
Partial factor for steel failure	$\gamma_{Ms,C1}$ 1)	[-]	_			1,	25			

¹⁾ In absence of other national regulations

 $N_{Rks,eq} = N_{Rk,C1}$ for all failures

Table C4.2: Characteristic values of tension and shear resistance under seismic action category C2

Sino				F	AZ II, FA	Z II A4,	FAZ II C	1)		
Size			M6	M8	M10	M12	M16	M20	M24	
Length of anchor	L_{max}	[mm]		-	186	221	285	394	-	
Steel failure										
Characteristic resistance tension load C2	$N_{Rk,s,C2}$	[kN]			27	41	66	111		
Partial factor for steel failure	γ _{Ms,C2} 2)	[-]		-		1,	,5		-	
Pullout failure										
	$_{ m h_{ef}}$	[mm]			60	70	85	100		
Characteristic resistance tension load in	$N_{Rk,p,C2}$	[kN]			5,1	7,4	21,5	30,7	_	
cracked concrete C2	h_{ef}	[mm]		-	40-59	50-69	65-84			
	$N_{Rk,p,C2}$				2,7	4,4	16,4		-	
Installation sensitivity factor	γinst	[-]				1,0				
Steel failure without lever arm										
	h _{ef}	[mm]			60	70	85	100		
Characteristic registeres sheet load C2	$V_{Rk,s,C2}$	[kN]			10,0	17,4	27,5	39,9	_	
Characteristic resistance shear load C2	h_{ef}	[mm]		•	40-59	50-69	65-84			
	$V_{Rk,s,C2}$	[kN]			7,0	12,7	22,0			
Partial factor for steel failure	γ _{Ms,C2} 2)	[-]				1,25				

¹⁾ FAZ II C: Only valid for cold-formed version (according to Annex A1) ²⁾ In absence of other national regulations

 $N_{Rks,eq} = N_{Rk,C1}$ for all failures

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C	
Performances Characteristic values of resistance under tension and shear loads under seismic action	Annex C 4

Table C5.1: Dis	splacements under	static and quasi	static tension loads
-----------------	-------------------	------------------	-----------------------------

Sina	FAZ II, FAZ II A4, FAZ II C								
Size	M6	M8	M10	M12	M16	M20	M24		
Displacement – factor for tensile load ¹⁾									
S factor	0,13	0,22	0,12	0,09	0,08	0,07	0,05		
δ_{N0} - factor [mm/kl	1,00	0,78	0,40	0,19	0,	09	0,07		
•	0,16	0,07	0,05	0,	06	0,05	0,04		
$\delta_{N\infty}$ - factor	0,24	0,29	0,21	0,14	0,10	0,06	0,05		

Table C5.2: Displacements under static and quasi static shear loads

Size					FAZ II			
Size		М6	M8	M10	M12	M16	M20	M24
Displacement – factor for shear load ²⁾								
S. factor	[mama/lcN1]	0,6	0,35	0,37	0,27	0,10	0,09	0,07
δ_{V0} - factor	[mm/kN]	0,9	0,52	0,55	0,40	0,14	0,15	0,11
				FAZ I	I A4, FA	ZIIC		
S factor	[mm/kN]	0,6	0,23	0,19	0,18	0,10	0,11	0,07
$\delta_{V\infty}$ - factor	[mm/kN]	0,9	0,27	0,22	0,16	0,11	0,05	0,09

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot N_{\text{ED}}$

 $\delta_{N\infty} = \delta_{N\infty} - factor \cdot N_{ED}$

(N_{ED}: Design value of the applied tension force)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0} - factor \cdot V_{ED}$

 $\delta_{V\infty} = \delta_{V\infty} - factor \cdot V_{ED}$

(V_{ED}: Design value of the applied shear force)

Table C5.3: Displacements under tension loads for category C2 for all embedment depths

Size									
Size			M6	M8	M10	M12	M16	M20	M24
Displacement DLS	$\delta_{\text{N,C2(DLS)}}$	[mm]			2,7	4	,4	5,6	
Displacement ULS	$\delta_{\text{N,C2 (ULS)}}$	[mm]	-		11,5	13,0	12,3	14,4	1

Table C5.4: Displacements under shear loads for category C2 for all embedment depths

Size									
Size			М6	M8	M10	M12	M16	M20	M24
Displacement DLS	$\delta_{\text{V,C2 (DLS)}}$	[mm]			4,1	4,7	5,5	4,8	
Displacement ULS	$\delta_{V,C2(ULS)}$	[mm]			6,2	7,8	10,1	11,2	

fischer Bolt Anchor FAZ II, FAZ II A4, FAZ II C

Performances

Displacements under tension and shear loads

Annex C 5