

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Saint-Gobain Byggevarer as
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	NEPD-3579-2171-EN
Registration number:	NEPD-3579-2171-EN
ECO Platform reference number:	-
Issue date:	20.06.2022
Valid to:	20.06.2027

weber Drensmørtel / BETO Natursette-D

Saint-Gobain Byggevarer as

www.epd-norge.no

General information

Product:

weber Drensmørtel / BETO Natursette-D

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number:

NEPD-3579-2171-EN

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR. NPCR 009:2018 Part B for Technical - Chemical products in the building and construction industry

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg weber Drensmørtel / BETO Natursette-D

Declared unit with option:

A1,A2,A3,A4

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Individual third party verification of each EPD is not required when the EPD tool is i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPDNorway, and iii) the proccess is reviewed annualy. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools.

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Anne Rønning, Norsus AS

(no signature required)

Owner of the declaration:

Saint-Gobain Byggevarer as Contact person: Line Holaker Phone: +47 41 63 50 46 e-mail: info(at)weber-norge.no

Manufacturer:

Saint-Gobain Byggevarer as

Place of production:

Saint-Gobain Byggevarer as P.O. Box 216 Alnabru 0614 Oslo, Norway Norway

Management system:

ISO 9001, ISO 14001

Organisation no:

940 198 178

Issue date: 20.06.2022

Valid to: 20.06.2027

Year of study:

2021

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration has been developed and verified using EPD tool lca.tools ver EPD2020.11, developed by LCA.no AS. The EPD tool is integrated into the company's environmental management system, and has been approved by EPD-Norway

Developer of EPD:

Line Holaker

Reviewer of company-specific input data and EPD:

Helene Løvkvist Andersen

Approved:

Sign

Hob How

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Weber Drensmørtel / BETO Natursette-D is a mortar and masonry for outdoor areas and natural stone settlements. The composition of the mass gives a very good drainage effect in the tempered mortar. This will allow drainage of surface water and water in the construction and that the mortar provides greater safety against deposits in natural stone coatings. The product can be used for traffic areas.

Product specification

The composition of the product is described in the following table:

Materials	%
Binder	10-30
Aggregate	60-90
Additives	< 0,1
Packaging	< 0,5

LCA: Calculation rules

Declared unit:

1 kg weber Drensmørtel / BETO Natursette-D

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Machines and facilities (capital goods) required for and during production are excluded, as is transportation of employees.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Plant manufacturing data is collected from previous year. The calculations are based on production in Trondheim, and delivery in 1000 kg big bags. Transportation used in A4 is 500 km.

Materials	Source	Data quality	Year
Aggregate	Østfoldforskning	Database	2016
Packaging	ecoinvent 3.4	Database	2017
Cement	NEPD-2274-1028-NO	EPD	2020

Technical data:

Compressive strength: 9 MPa after 1 day and 40 MPa after 28 days. Flexural strength: 8 MPa after 28 days. For further information, see www.weber-norge.no and www.betomur.no

Market:

Norway

Reference service life, product

The reference service life of the product is similar to the service life of the construction or building.

Reference service life, building

60 years

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

System boundary:

All processes from raw material extraction to product transport to the construction site are included in the analysis (A1-A4).

The flow chart below illustrates the system boundaries for the A1 to A3 part of the analysis. Transportation from production plant to Oslo is included in A4.

Additional technical information:

Ca. 2,5 kg/m2 (powder) pr. mm layer thickness.

100 mm thickness: ca 250 kg/m2. Cured material is inactive and not classified as hazardous waste and may be disposed as construction waste to disposal or recycling. The packaging properly emptied is not classified as hazardous waste.

ka

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (l/t)
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 6	500	0,022606	l/tkm	11,30
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Accombly (A5)

Assembly (A5)			Use (B1)	
•	Unit	Value		Unit Va
Auxiliary	kg			
Water consumption	m ³			
Electricity consumption	kWh		1	
Other energy carriers	MJ		7	
Material loss	kg		7	
Output materials fr ste treatment	kg		7	
Dust in the air	kg		7	
VOC emissions	kg		1	

Maintenance (B2)/Repair (B3)

Maintenance (B2)/Repair (B3)			Replacement (B4)/Refurbishment (B5)		
	Unit	Value	•	Unit	Value
Maintenance cycle*	NCC		Replacement cycle*		
Auxiliary	cha.		Electricity consumption	kWh	
Other resources	4rie	20	Replacement of worn parts		
Water consumption	m ³	A6 "	* Described above if relevant		
Electricity consumption	kWh		r .		
Other energy carriers	MJ		47		
Material loss	kg		1Ad		
VOC emissions	kg		" are		
Operational energy (B6) and water consu	mption (B7)		End of Life (C1, Chor		
•	Unit	Value	· · · · · · · · · · · · · · · · · · ·	Unit	Value
Water consumption	m ³		Hazardous waste disposed	kg	
Electricity consumption	kWh		Collected as mixed construction we	kg	
Other energy carriers	MJ		Reuse	kg	

Energy recovery
To landfill

kW

Recycling

Transport to waste processing (C2)

Power output of equipment

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage Construction stage			User stage End of life stage					9	Beyond the system bondaries							
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	W aste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	· MND

Environmental impact

Parameter	Unit	A1	Α2	A3	Α4
GWP	kg CO ₂ -eq	1,68E-01	7,61E-03	3,45E-02	4,14E-02
ODP	kg CFC11 -eq	2,50E-09	1,46E-09	3,86E-09	8,50E-09
РОСР	kg C ₂ H ₄ -eq	2,17E-05	1,51E-06	9,44E-06	6,47E-06
AP	kg SO ₂ -eq	7,52E-05	4,78E-05	7,03E-05	1,07E-04
EP	kg PO4 ³⁻ -eq	9,22E-05	9,20E-06	2,16E-05	1,47E-05
ADPM	kg Sb -eq	5,83E-08	7,37E-09	2,46E-08	9,85E-08
ADPE	MJ	5,51E-01	1,14E-01	3,21E-01	6,79E-01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

Remarks to environmental impacts

No environmental impacts from the product.

Resource use					
Parameter	Unit	A1	A2	A3	A4
RPEE	MJ	1,53E-01	1,18E-03	1,23E-01	1,24E-02
RPEM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	1,53E-01	1,18E-03	1,23E-01	1,24E-02
NRPE	MJ	5,79E-01	1,16E-01	3,35E-01	7,01E-01
NRPM	MJ	7,26E-02	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	6,51E-01	1,16E-01	3,35E-01	7,01E-01
SM	kg	7,26E-02	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	2,32E-01	0,00E+00	2,01E-05	0,00E+00
NRSF	MJ	2,94E-01	0,00E+00	0,00E+00	0,00E+00
W	m ³	1,14E-03	1,66E-05	4,88E-05	1,66E-04

RPEE Renewable primary energy resources used as energy carrier, RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier, NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	A3	A4				
HW	kg	5,25E-07	5,36E-08	8,32E-05	3,74E-07				
NHW	kg	2,06E-02	4,13E-03	2,31E-02	6,40E-02				
RW	kg	INA*	INA*	INA*	INA*				
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed									

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 INA Indicator Not Assessed

End of life - Output flow

I						
Parameter	Unit	A1	A2	A3	A4	
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	
MR	kg	0,00E+00	0,00E+00	1,86E-04	0,00E+00	
MER	kg	0,00E+00	0,00E+00	6,90E-04	0,00E+00	
EEE	MJ	INA*	INA*	INA*	INA*	
ETE	MJ	INA*	INA*	INA*	INA*	
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy						
Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed						

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
El-mix, Norway (kWh)	ecoinvent 3.4	31,04	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskriften, Annex III), see table.

Name	CASNo	Amount
Portland Cement	65997-15-1	10-30%

Indoor environment

The product has no impact on the indoor environment.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works. Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system, LCA.no report number 04.18

Iversen et al., (2019) EPD generator for Saint-Gobain Weber and Scanspac - Background information and LCA data, LCA.no report number 05.18

NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 009 Part B for technical-chemical products. Ver. 1.0 June 2018, EPD-Norge.

C epd-norge	Program operator and publisher	Phone:	+47 23 08 80 00
	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
	Post Box 5250 Majorstuen, 0303 Oslo,Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 41 63 50 46
	Saint-Gobain Byggevarer as	e-mail:	info(at)weber-norge.no
	P.O. Box 216 Alnabru 0614 Oslo, Norway	web:	www.weber-norge.no
LCA	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 6B 1671 Kråkerøy	web:	www.lca.no
LCA	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS	e-mail:	post@lca.no
	Dokka 1C,1671 Kråkerøy	web:	www.lca.no