ENVIRONMENTAL PRODUCT DECLARATION

ISO 14025 ISO 21930 EN 15804

Owner of the declaration

Program holder

Declaration number

Issue date

Valid to

Saint-Gobain Byggevarer as

The Norwegian EPD Foundation

NEPD00276E

20.10.2014

20.10.2019

Leca Universalblokk 20 cm, Lightweight Concrete Block

Product

Saint-Gobain Byggevarer as

Owner of the declaration

General information

Product:

Leca Universalblokk 20 cm, Lightweight Concrete Block

Program holder:

The Norwegian EPD Foundation P.O.Box 5250 Majorstuen

0303 Oslo

Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number: 'ÞÒÚÖ€€Ğ Î Ò

This declaration is based on Product Category Rules:

EN 15804:2012+A1:2013 serve as core PCR Requirements on the EPD for Lightweight concrete.

Declared unit:

1 m3 Leca Universalblokk 20 cm, Lightweight Concrete Block

Declared unit with option:

A1,A2,A3,A4

Functional unit:

The EPD has been worked out by:

The declaration has been developed using EPDGen-version 1.0, Approval: NEPDT02

Company specific data are collected and registry by:

Stian Gravnås

Company specific data are audited by:

Line Holaker

Verification:

Independent verification of data, other environmental information and EPD has been carried out in accordance with ISO14025, 8.1.3 and 8.1.4

externally

Senior Researcher Anne Rønning (Independent verifier approved by EPD-Norway)

Owner of the declaration:

Saint-Gobain Byggevarer as Contact person: Line Holaker Phone: +47 22 88 77 00 e-mail: info(at)weber-norge.no

Manufacturer:

Saint-Gobain Byggevarer as

Place of production:

Weber Leca Borge, Moumgt., 1658 Torp, Norway

Management system:

ISO 9001, ISO 14001

Org. No:

940 198 178

Issue date: ŒÈ€ÈFI

Valid to: ŒÈŒFJ

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Year of study:

2014

Approved:

Dagfinn Malnes
Managing Director of EPD-Norway

Declared unit:

1 m3 Leca Universalblokk 20 cm, Lightweight Concrete Block

Key environmental indicators	Unit	Cradle to gate A1 - A3	Transport A4
Global warming	kg CO2 eqv	117,08	2,84
Energy use	MJ	1635,1528	37,1641
Dangerous substances		*	*

^{*}The product contains no substances from the REACH Candidate list or the Norwegian priority list

Product

Product description:

Leca Universalblokk 20 cm is produced by Leca lightweight aggregate, cement, sand and water. Leca Universalblokk is a fast and efficient solution for loadbearing and non-bearing walls.

Technical data:

SINTEF Technical Approval – TG2032. For further information see www.weber-norge.no

Reference service life:

As for the building

Product specification:

The composition of the product is described in the following table:

Materials	Percent
Cement	10,90
Aggregate	76,43
Water	10,88
Packaging	1,79

Market:

Norway

LCA: Calculation rules

Declared unit:

1 m3 Leca Universalblokk 20 cm, Lightweight Concrete Block

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included with very small amounts (<1%) are not included.

Allocation:

The allocation is made in accordance with provisions in EN 15804. Incoming energy and water, and in-house waste from the production, is allocated equally among all products through mass allocation. Effects of primary production of recycled materials are allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Materials	Data quality	Source	Year
Aggregate	EPD	NEPD00120E	2013
Aggregate	EPD	NEPD00120E	2013
Aggregate	Database	Østfoldforskning	2012
Cement	EPD	NEPD00024N	2013
Water			
Packaging			
Packaging	European Average	APME	

System boundary:

All processes from raw material extraction to product from the factory gate are included in the analysis (A1-A3). In addition, transportation to a central warehouse placed in accordance with guidelines issued by the EPD Norway (A4) is included.

FlowChart:

LCA: Scenarios and additional technical information

The following infomation describe the scenarios in the different modules of the EPD.

Transport from production site to user (A4)

Туре	Capacity	Type of vehicle	Distance km	Fuel/Energy	Unit	Value (I/t)	
3,7-3	return) %	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		consumption			
Truck	75 %	Lorry to market	50	0,015594	l/tkm	0,78	
Railway							
Boat							
Other							

Installation in the building (A5)

	Unit	Value
Auxiliary	kg	0
Water consumption	m3	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Material loss	kg	0
Output materials from waste treatment	kg	0
Dust in the air	kg	0

Label

Maintenance (B2)/Repair (B3)

	Unit	Value
Maintenance cycle		0
Auxiliary	kg	0
Other resources	kg	0
Water consumption	М3	0
Electricity consumption	kWh	0
Other energy carriers	MJ	0
Material loss	kg	0

Use (B1):

	Unit	Value
No effect	0	0

End of Life (C1, C3, C4)

	Unit	Value
Hazardous waste disposed	kg	0
Collected as mixed construction waste	kg	0
Reuse	kg	0
Recycling	kg	0
Energy recovery	kg	0
To landfill	kg	0

Transport to waste processing (C2)										
Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)				
Truck	0 %		0	0	l/tkm	0				
Railway										
Boat			-							
Other										

Benefits and loads beyond the system boundaries (D)

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Product stage			insta	ruction Ilation age		User stage							End of li	fe stage		Beyond the system bondaries
Raw materials	22 Transport	Manufacturing S	Transport	Construction/ Installation stage	88 0 81	Maintenance	E Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction/	C Transport	Waste processing	Disposal 2	Reuse-Recovery- Recycling-potential
X	X	X	X	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND .	MND

Environmental impact

Parameter	Unit	A1	A2	А3	A4	A5	C1	C2
GWP	kg CO ₂ -eqv	1,01E+002	2,98E+000	1,31E+001	2,84E+000			
ODP	kg CFC11 -eqv	1,23E-006	0,00E+000	1,96E-006	0,00E+000			
POCP	kg C ₂ H ₄ -eqv	1,05E-001	2,94E-003	3,15E-002	7,51E-003			
AP	kg SO ₂ -eqv	3,46E-001	9,71E-003	5,13E-003	1,73E-003			
EP	kg PO ₄ ³⁻ -eqv	3,13E-002	1,49E-003	2,64E-003	1,16E-003			
ADPM	kg Sb -eqv	1,27E-004	0,00E+000	5,16E-005	0,00E+000			
ADPE	MJ	5,62E+002	3,93E+001	1,68E+002	3,73E+001			

GWP Global warming potential; **ODP** Depletion potential of the stratospheric ozone layer; **POCP** Formation potential of tropospheric photochemical oxidants; **AP** Acidification potential of land and water; **EP** Eutrophication potential; **ADPM** Abiotic depletion potential for non fossil resources; **ADPE** Abiotic depletion potential for fossil resources

Resource use

Parameter	Unit	A1	A2	А3	A4	A5	C1	C2
RPEE	MJ	3,09E+002	5,28E-002	1,07E+002	6,41E-002			
RPEM	MJ	1,75E-001	1,81E-002	1,43E-001	0,00E+000			
TRPE	MJ	3,10E+002	7,09E-002	1,08E+002	6,41E-002			
NRPEE	MJ	6,79E+002	3,91E+001	1,77E+002	3,71E+001			
NRPEM	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
TNRPE	MJ	6,79E+002	3,91E+001	1,77E+002	3,71E+001			
SM	kg	1,53E+001	0,00E+000	0,00E+000	0,00E+000			
RSF	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
NRSF	MJ	3,24E+002	0,00E+000	0,00E+000	0,00E+000			
W	m ³	1,12E+002	3,64E-001	2,44E+001	3,31E-001			

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TRPE Total use of renewable primary energy resources; NRPEE Non renewable primary energy resources used as energy carrier; NRPEM Non renewable primary energy resources used as materials; TNRPE Total use of virgin, non-renewable resources with energy content; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life - Waste

Parameter	Unit	A1	A2	А3	A4	A5	C1	C2
HW	kg	3,29E-003	0,00E+000	2,22E-002	0,00E+000			
NHW	kg	1,66E+001	8,31E-003	2,20E+000	6,93E-003			
RW	kg	0,00E+000	0,00E+000	0,00E+000	0,00E+000			

HW Hazardous waste disposed; NHW Non hazardous waste disposed, RW Radioactive waste disposed

End of life - Output flow

Parameter	Unit	A1	A2	А3	A4	A5	C1	C2
CR	kg	0,00E+000	0,00E+000	2,00E-003	0,00E+000			
MR	kg	6,82E-002	0,00E+000	4,22E-001	0,00E+000			
MER	kg	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
EEE	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			
ETE	MJ	0,00E+000	0,00E+000	0,00E+000	0,00E+000			

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Additional Norwegian requirements

Electricity

The following data from ecoinvent v3 (June 2012) for Norwegian production mix included import, low voltage is used; Energy/Electricity country mix/Low voltage/Market: Electricity, low voltage {NO}| market for | Alloc Def, U. Production of transmission lines, in addition to direct emissions and loss in grid are included. Characterisation factors stated in EN 15804:2012+A1:2013 are used. This gives following greenhouse gas emissions: 24 g CO2-eqv/kWh

Hazardous substances

None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (checked 10.10.2014) substances on the Norwegian Priority list (checked 10.10.2014) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations

Indoor air

The product meets the requirements for low pollutant (M1) by EN15251:2007 Appendix E. The product has no impact on the indoor environment.

Bibliography

NS-EN ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures

NS-EN ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines NS-EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products

www.bau-umvelt.com: Recuirements on the EPD for Light weight concrete. Vold, M and Edvardsen, T, 2013: Weber EPD Generator Background information, Østfoldforskning AS, Fredrikstad, Norge, Nov 2013

epd-norge.no	Program holder and publisher The Norwegian EPD Foundation	Phone:	+47 23 08 80 00
epd-norge.no The Norwegian EPD Foundation	P.O.Box 5250 Majorstuen	email:	post@epd-norge.no
	0303 Oslo Norway	web:	www.epd-norge.no
	Owner of the declaration	Phone:	+47 22 88 77 00
Tweber	Saint-Gobain Byggevarer as	Fax:	+47 22 64 54 54
SAINT-GOBAIN	P.O. Box 216 Alnabru	email:	info(at)weber-norge.no
	0614 Oslo, Norway	web:	www.weber-norge.no
4.	Author of the Life Cycle Assessment	Phone:	+47 69 35 11 00
Østfoldforskning	Østfoldforskning AS	Fax:	+47 69 34 24 94
O potroidioi ski ili ib	Stadion 4	email:	post@ostfoldforskning.no
	1671 Kråkerøy, Norway	web:	www.ostfoldforskning.no