

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Saint-Gobain Finland Oy					
Program operator:	The Norwegian EPD Foundation					
Publisher:	The Norwegian EPD Foundation					
Declaration number:	NEPD-1889-826-EN					
Registration number:	NEPD-1889-826-EN					
ECO Platform reference number:	-					
Issue date:	09.10.2019					
Valid to:	09.10.2024					

weber rex fix

Saint-Gobain Finland Oy

www.epd-norge.no

Product: weber rex fix Program operator: The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 977 22 020 e-mail: post@epd-norge.no Declaration number: NEPD-1889-826-EN ECO Platform reference number: This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR. NPCR Part A: Construction products and services. Ver. 1.0. April 2017

Statement of liability:

General information

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg weber rex fix

Declared unit with option:

A1,A2,A3,A4

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

and Konny

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Saint-Gobain Finland Oy Contact person: Anne Kaiser Phone: +358400289933 e-mail: anne.kaiser@saint-gobain.com

Manufacturer:

Saint-Gobain Finland Oy

Place of production:

Parainen Premix plant Kalkkitehtaantie 21600 Parainen Finland

Management system:

ISO 9001:2015, ISO 14001:2015 and OHSAS 18001:2007

Organisation no:

FI09515553

Issue date: 09.10.2019

Valid to: 09.10.2024

Year of study:

2018

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using eEPD v3.0 from LCA.no Approval: Company specific data are:

Collected/registered by:	Riitta Helio

Internal verification by: Anne Kaiser

Approved:

Product

Product description:

Weber rex fix is low dust cementitious adhesive for attaching ceramic tiles in renovation and new constructions indoors and outdoors on various demanding substrates like:

- bathroom, toilet and laudry room tiling
- tiling on tiles, PVC, steel and paint
- can be used as a bonding bridge.

Weber rex fix has long open time, good adhesion on demanding substrates and it is suitable for walls and floors. It has elasticity class S1 (SFS-EN 12002).

Product specification

The composition of the product is described in the following table:

Materials	%
Binder	30-50%
Aggregate	30-45%
Filler	10-30%
Additives	4-8%
Packaging	2.97%

LCA: Calculation rules

Declared unit:

1 kg weber rex fix

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Machines and facilities (capital goods) required for and during production are excluded, as is transportation of employees.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Plant manufacturing data is collected for 2017. Raw materials and production volumes are based on the data from September - December 2018 and production plans for the 2019. The whole year data is not available, since products are new.

Materials	Source	Data quality	Year
Chemicals	Chemicals below cut-off	No data	0
Aggregate	ecoinvent 3.4	Database	2017
Binder	ecoinvent 3.4	Database	2017
Filler	ecoinvent 3.4	Database	2017
Packaging	ecoinvent 3.4	Database	2017
Packaging	Modified ecoinvent 3.4	Database	2017
Binder	Finnsementti	Environmental Data Sheet	2017

Technical data:

Weber rex fix is designed, produced and CE marked according to EN 12004:2007 + A1:2012 Adhesives for tiles. Requirements, evaluation of conformity, classification and designation.

Market:

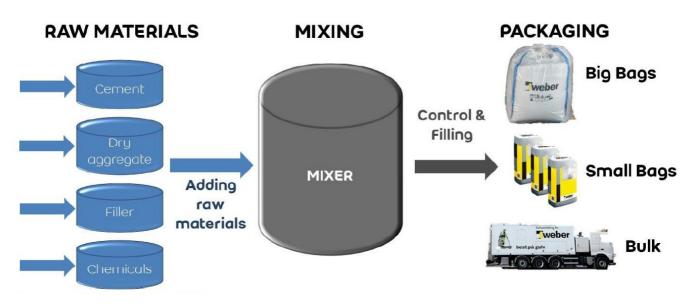
Nordic and Baltic countries.

Reference service life, product

The reference service life of the product is similar to the service life of the building.

Reference service life, building

60 years.


Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

System boundary:

All processes from raw material extraction to product transport to the construction site are included in the analysis (A1 - A4). The flow chart below illustrates the system boundaries for the A1 to A3 part of the analysis.

Additional technical information:

The density of the product is 1,61 kg/dm3. Recommended water content for dry product is approx. 0,29 l/kg.

ue

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport to market (A4) is calculated based on the default distance of 300 km from NPCR 009. Additional information is given in the table below regarding distances to other relevant markets and calculation factors for converting GWP/A4 to the specific market.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %		Distance km	Fuel/Energy consumption	Unit	Value (I/t)	
Truck	55,0 %	Truck, lorry over 32 tonnes, EURO 5	300	0,022823	l/tkm	6,85	
Railway					l/tkm		
Boat					l/tkm		
Other Transportation					l/tkm		

Additional A4 information	Unit/Range	Value
Tullinge, Sweden (truck / roro boat / truck to jobsite: 658 km)	Multiplication factor GWP/A4	1.61
Lilleström, Norway (truck / roro boat / truck to jobsite: 1135km)	Multiplication factor GWP/A4	3.11
Karlslunde, Denmark (truck / roro boat / truck to jobsite: 1312 km)	Multiplication factor GWP/A4	3.67
Tallinn, Estonia (truck / roro boat / truck to jobsite: 563 km)	Multiplication factor GWP/A4	1.57
Riga, Latvia (truck / roro boat / truck to jobsite: 869 km)	Multiplication factor GWP/A4	2.54
Vilnius, Lithuania (truck / roro boat / truck to jobsite: 1162 km)	Multiplication factor GWP/A4	3.47

Assembly (A5)			Use (B1)		
•	Unit	Value	•	Unit Va	lu
Auxiliary	kg				
Water consumption	m ³				
Electricity consumption	kWh				
Other energy carriers	MJ				
Material loss	kg				
Output materials fr ste treatment	kg				
Dust in the air	kg				
VOC emissions	kg				

Maintenance	(B2)/Renair	(R3
maintenance	(BZI/Rebair	(

Maintenance (B2)/Repair (B3)			Replacement (B4)/Refurbishment (B5)						
	Unit	Value		Unit	Value				
Maintenance cycle*	UCC.		Replacement cycle*						
Auxiliary	Char.		Electricity consumption	kWh					
Other resources	4/10		Replacement of worn parts						
Water consumption	Scenario m ³ kWh	S' dfa	* Described above if relevant						
Electricity consumption	kWh	6	r a						
Other energy carriers	MJ		47.						
Material loss	kg		A1-A4 are						
VOC emissions	kg		are						

Operational energy (B6) and water consu	imption (B7)	End of Life (C1, - not in the second					
	Unit	Value	· · · · · ·	Unit	Value		
Water consumption	m ³		Hazardous waste disposed	kg			
Electricity consumption	kWh		Collected as mixed construction we.	kg			
Other energy carriers	MJ		Reuse	kg			
Power output of equipment	kW		Recycling				
			Energy recovery				
			To landfill	kg			
			1				

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)	
Truck					l/tkm		
Railway					l/tkm		
Boat					l/tkm		
Other Transportation					l/tkm		

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	Product stage Construction stage			lation	User stage							End of I	life stage	9	Beyond the . system bondaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1	A2	A3	A4
GWP	kg CO ₂ -eq	3,97E-01	8,62E-03	3,61E-03	2,62E-02
ODP	kg CFC11 -eq	5,08E-09	1,67E-09	4,60E-10	5,10E-09
POCP	kg C ₂ H ₄ -eq	6,93E-05	1,46E-06	2,18E-06	4,23E-06
AP	kg SO ₂ -eq	8,28E-04	3,04E-05	3,29E-05	8,51E-05
EP	kg PO ₄ ³⁻ -eq	2,35E-04	6,40E-06	1,22E-05	1,43E-05
ADPM	kg Sb -eq	6,58E-07	1,91E-08	2,59E-08	5,91E-08
ADPE	MJ	3,98E+00	1,35E-01	2,32E-02	4,11E-01

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

*INA Indicator Not Assessed

Resource use					
Parameter	Unit	A1	A2	A3	A4
RPEE	MJ	7,31E-01	2,45E-03	4,36E-01	7,42E-03
RPEM	MJ	4,68E-01	0,00E+00	0,00E+00	0,00E+00
TPE	MJ	1,20E+00	2,45E-03	4,36E-01	7,42E-03
NRPE	MJ	4,39E+00	1,39E-01	2,39E-02	4,23E-01
NRPM	MJ	2,13E-01	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	4,60E+00	1,39E-01	2,39E-02	4,23E-01
SM	kg	2,32E-02	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	1,04E-01	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	1,68E-01	0,00E+00	0,00E+00	0,00E+00
W	m ³	3,79E-03	3,26E-05	1,26E-05	9,98E-05

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Waste

Parameter	Unit	A1	A2	A3	A4	
HW	kg	2,76E-05	7,36E-08	4,57E-05	2,25E-07	
NHW	kg	2,63E-02	1,24E-02	1,96E-02	3,84E-02	
RW	kg	INA*	INA*	INA*	INA*	
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed						

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

End of life - Output flow

•					
Parameter	Unit	A1	A2	A3	A4
CR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MR	kg	2,20E-04	0,00E+00	3,76E-04	0,00E+00
MER	kg	0,00E+00	0,00E+00	6,21E-04	0,00E+00
EEE	MJ	INA*	INA*	INA*	INA*
ETE	MJ	INA*	INA*	INA*	INA*
CP. Components for rouse: MP. Materials for recycling: MEP. Materials for operativ recovery: EEE Experted electric operativ: ETE Experted thermal					

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009 *INA Indicator Not Assessed

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
District heating, Parainen (kWh)	Modified ecoinvent 3.4	20,54	g CO2-ekv/kWh
Renewable electricity with Guarantee of Origin from LOS (kWh)	Modified ecoinvent 3.4	60,20	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskriften, Annex III), see table.

Indoor environment

Regarding indoor air quality Weber rex fix has M1 indoor emission classification granted by the Finnish Building Information Foundation (Suomen Rakennustietosäätiö, RTS).

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A1:2013 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works. Core rules for environmental product declarations of construction products. ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2018) eEPD v3.0 - Background information for EPD generator system, LCA.no report number 04.18

Iversen et al., (2019) EPD generator for Saint-Gobain Weber and Scanspac - Background information and LCA data, LCA.no report number 05.18 NPCR Part A: Construction products and services. Ver. 1.0. April 2017, EPD-Norge.

NPCR 009 Part B for technical-chemical products. Ver. 1.0 June 2018, EPD-Norge.

epd-norge.no	Program operator and publisher The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo	Phone: e-mail:	+47 977 22 020 post@epd-norge.no
®	0303 Oslo Norway	web:	www.epd-norge.no
Tweber	Owner of the declaration Saint-Gobain Finland Oy	Phone: Fax:	+358400289933
SAINT-GOBAIN	P.O. Box 70 Fi-00381 Helsinki	e-mail: web:	anne.kaiser@saint-gobain.com www.saint-gobain.fi
\frown	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
	LCA.no AS	Fax:	
	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no
\frown	Developer of EPD generator	Phone:	+47 916 50 916
	LCA.no AS		
	Dokka 1C	e-mail:	post@lca.no
.no	1671 Kråkerøy	web:	www.lca.no