

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:	Saint-Gobain Byggevarer as
Program operator:	The Norwegian EPD Foundation
Publisher:	The Norwegian EPD Foundation
Declaration number:	ÁÞ ÓÚÖËFÍ FHÉ FGEÖÞ
Registration number:	ÞÒÚÖËTÍ FHÉ FGEÐÞ
ECO Platform reference number:	Ë
Issue date:////////////////////////////////////	(GFÈEGÈÆFÌ
Valid to:	(GF)ÈECIÈECH

weber.mix M5 SS, dry mortar

Saint-Gobain Byggevarer as

www.epd-norge.no

General information

Product:

weber.mix M5 SS, dry mortar

Program operator:

The Norwegian EPD Foundation Pb. 5250 Majorstuen, 0303 Oslo Phone: +47 23 08 80 00 e-mail: post@epd-norge.no

Declaration number: ÞÒÚÖËFÍ FHÉ FGEÒÞ

ECO Platform reference number:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A1:2013 serves as core PCR Requirements on the EPD for Mineral factory-made mortar.

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg weber.mix M5 SS, dry mortar

Declared unit with option:

A1, A2, A3, A4

Functional unit:

Verification:

Independent verification of data, other environmental information and the declaration according to ISO14025:2010, § 8.1.3 and § 8.1.4

External

Third party verifier:

Sign

and Roming

Senior Research Scientist, Anne Rønning

(Independent verifier approved by EPD Norway)

Owner of the declaration:

Saint-Gobain Byggevarer as Contact person: Line Holaker Phone: +47 41 63 50 46 e-mail: info(at)weber-norge.no

Manufacturer:

Saint-Gobain Byggevarer as

Place of production:

Saint-Gobain Weber Ski, Norway

Management system:

ISO 9001, ISO 14001

Organisation no:

940 198 178

Issue date: GFÈ€GÈ€FÌ

Valid to: GFÈ€GÈ€GH

Year of study:

2018

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Author of the Life Cycle Assessment:

The declaration is developed using EPDGen-Version 1.1 Approval: Company specific data are:

Collected/registered by: Line Holaker

Internal verification by: Cecilie Evju

Approved:

Sign
Hakon Hauan Managing Director of EPD-Norway

Product

Product description:

weber.mix M5 SS is a dry mortar based on cement, filler and sand. The mortar is designed for masonry work using bricks with high water absorption. When mixed with water, it is a ready-to-use mortar for indoor and outdoor use.

Product specification

The composition of the product is described in the following table:

Materials	
Binder	10-30%
Aggregate	60-90%
Filler	5-10%
Additives	<0,1%
Packaging	0,2%

LCA: Calculation rules

Declared unit:

1 kg weber.mix M5 SS, dry mortar

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. This cut-off rule does not apply for hazardous materials and substances.

Technical data:

Mortar class M5 (EN 998-2). Compressive strength 28 days > 5MPa. Flexural strength 28 days >2 MPa. The production of weber.mix M5 SS is certified according to EN 998-2. For further information, see www.weber-norge.no

Market:

Norway

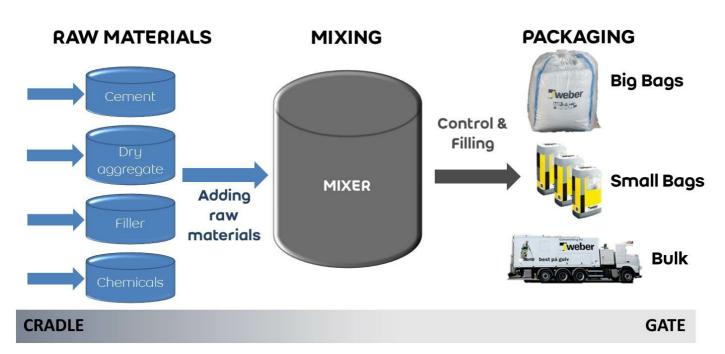
Reference service life, product

Reference service life, building

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:


Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Chemicals	Chemicals below cut-off	No data	0
Packaging	Østfoldforskning	Database	2013
Cement	NEPD00023N	EPD	2013
Aggregate	Østfoldforskning	Supplier data	2013
Filler	Østfoldforskning	Supplier data	2013

System boundary:

All processes from raw material extraction to product from the factory gate are included in the analysis (A1-A3). In addition, transportation to a central warehouse placed in accordance with guidelines issued by the EPD Norway (A4) is included. The flow chart below illustrates the system boundaries for the A1 to A3 part of the analysis.

Additional technical information:

2 kg dry mortar gives approximately 1 liter of final product. The remaining powder is classified as hazardous waste. Cured material is inactive and not classified as hazardous waste and may be disposed as construction waste to disposal or recycling. The packaging properly emptied is not classified as hazardous waste.

Unit

Value

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck	53,0 %	Truck, EURO 5	50	0,020216	l/tkm	1,01
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Use (B1)

Assembly (A5)

	Unit	Value
Auxiliary	kg	
Water consumption	m ³	
Electricity consumption	kWh	
Other energy carriers	MJ	
Material loss	kg	
Output materials from waste treatment	kg	
Dust in the air	kg	
VOC emissions	kg	

Replacement (B4)/Refurbishment (B5)

_			
		Unit	Value
	Replacement cycle*		
	Electricity consumption	kWh	
	Replacement of worn parts		
	* Described above if relevant		

Described above if relevant

Maintenance (B2)/Repair (B3)

Maintenance cycle*		Re
Auxiliary	kg	Ele
Other resources	kg	Re
Water consumption	m ³	* D
Electricity consumption	kWh	
Other energy carriers	MJ	
Material loss	kg	
VOC emissions	kg	

Unit

Unit

m³

kWh

MJ

КW

Value

Value

Operational energy (B6) and water consumption (B7)

End of Life (C1, C3, C4) Unit Value Hazardous waste disposed kg Collected as mixed construction waste kg Reuse kg Recycling kg Energy recovery kg To landfill kg

Transport to waste processing (C2)

Water consumption

Electricity consumption

Power output of equipment

Other energy carriers

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy consumption	Unit	Value (I/t)
Truck					l/tkm	
Railway					l/tkm	
Boat					l/tkm	
Other Transportation					l/tkm	

Benefits and loads beyond the system boundaries (D)

LCA: Results

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	Pro	Product stage Construction stage			lation								End of I	ife stage	9	Beyond the system bondaries	
ć	Kaw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling- potential
	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	. D
	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	. MND

Environmental impact

Parameter	Unit	A1	A2	A3	A4				
GWP	kg CO ₂ -eq	1,03E-01	7,32E-03	1,43E-03	4,23E-03				
ODP	kg CFC11 -eq	1,47E-09	1,38E-09	2,46E-10	8,00E-10				
POCP	kg C ₂ H ₄ -eq	1,23E-05	1,39E-06	2,15E-07	7,50E-07				
AP	kg SO ₂ -eq	7,13E-05	3,02E-05	4,74E-06	1,49E-05				
EP	kg PO ₄ ³⁻ -eq	1,42E-04	5,90E-06	1,04E-06	3,10E-06				
ADPM	kg Sb -eq	2,68E-08	1,52E-08	4,09E-09	9,35E-09				
ADPE	MJ	6,59E-01	1,11E-01	1,91E-02	6,46E-02				
	GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical								

oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

Resource use

Parameter	Unit	A1	A2	A3	A4
RPEE	MJ	1,07E-01	1,68E-03	2,56E-02	9,93E-04
RPEM	MJ	9,34E-04	5,01E-04	1,87E-04	3,04E-04
TPE	MJ	1,08E-01	2,18E-03	2,58E-02	1,30E-03
NRPE	MJ	6,37E-01	1,13E-01	2,01E-02	6,59E-02
NRPM	MJ	5,81E-02	0,00E+00	0,00E+00	0,00E+00
TRPE	MJ	6,95E-01	1,13E-01	2,01E-02	6,59E-02
SM	MJ	2,07E-03	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	1,80E-01	0,00E+00	0,00E+00	0,00E+00
W	m ³	4,86E-03	9,62E-05	1,98E-04	5,88E-05

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

End of life - Waste

Parameter	Unit	A1	A2	A3	A4
HW	kg	3,10E-07	8,07E-08	2,68E-07	5,00E-08
NHW	kg	9,43E-03	1,06E-02	4,28E-04	6,53E-03
RW	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00
HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed					

Reading example: 9,0 E-03 = 9,0*10-3 = 0,009

End of life - Output flow

Parameter	Unit	A1	A2	A3	A4
CR	kg	0,00E+00	0,00E+00	4,25E-03	0,00E+00
MR	kg	6,98E-05	0,00E+00	7,03E-06	0,00E+00
MER	kg	0,00E+00	0,00E+00	1,61E-06	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
ETE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00
CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy					
Reading example: 9,0 E-03 = 9,0*10-3 = 0,009					

Additional Norwegian requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit
El-mix, Norway (kWh)	Ecoinvent 3	25,30	g CO2-ekv/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list. The product is classified as hazardous waste, see table.

Name	CASNo	Amount
Portland Cement	65997-15-1	10-30%

Indoor environment

The product has no impact on the indoor environment.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines

EN 15804:2012+A1:2013 Sustainability of construction works - Environmental product declaration - Core rules for the product

category of construction products

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ecoinvent v3, Alloc Rec, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2017) EPD generator v2.0 - Background information for system verification, OR 10.17, Østfoldforskning, Fredrikstad.

Product Category Rules for Environmental Product Declarations: Institut Bauen und Umwelt e.V. (IBU): Requirements on the EPD for Mineral factorymade mortar.

