

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-13/1068 of 28 February 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

SPIT B-LONG

Plastic anchor for multiple use in concrete and masonry for non-structural applications

ITW Construction Products Italy S.r.l. V.le Regione Veneto, 5 35127 PADOVA (PD) ITALIEN

ITW Construction Products Italy S.r.l. V.le Regione Veneto, 5 35127 PADOVA (PD) ITALIEN

18 pages including 14 annexes which form an integral part of this assessment

Guideline for European technical approval of "plastic anchors for multiple use in concrete and masonry for non-structural applications", ETAG 020, Edition March 2012

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-13/1068

Page 2 of 18 | 28 February 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z7281.14 8.06.04-825/13

European Technical Assessment ETA-13/1068

Page 3 of 18 | 28 February 2014

Specific part

1 Technical description of the product

The frame anchor SPIT B-LONG is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The Illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Requirements with respect to the mechanical resistance and stability of non load bearing parts of the works are not included in this Basic requirement but are under the Basic Requirement safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not relevant.

3.4 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 - C 6
Characteristic resistance for bending moments	See Annex C 1
Displacements under shear and tension loads	See Annex C 1, C 6
Edge distances and spacings	See Annex B 3, B 4

Z7281.14 8.06.04-825/13

European Technical Assessment ETA-13/1068

Page 4 of 18 | 28 February 2014

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was investigated for this product.

3.8 General aspects

The verification of durability is part of testing of the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are kept.

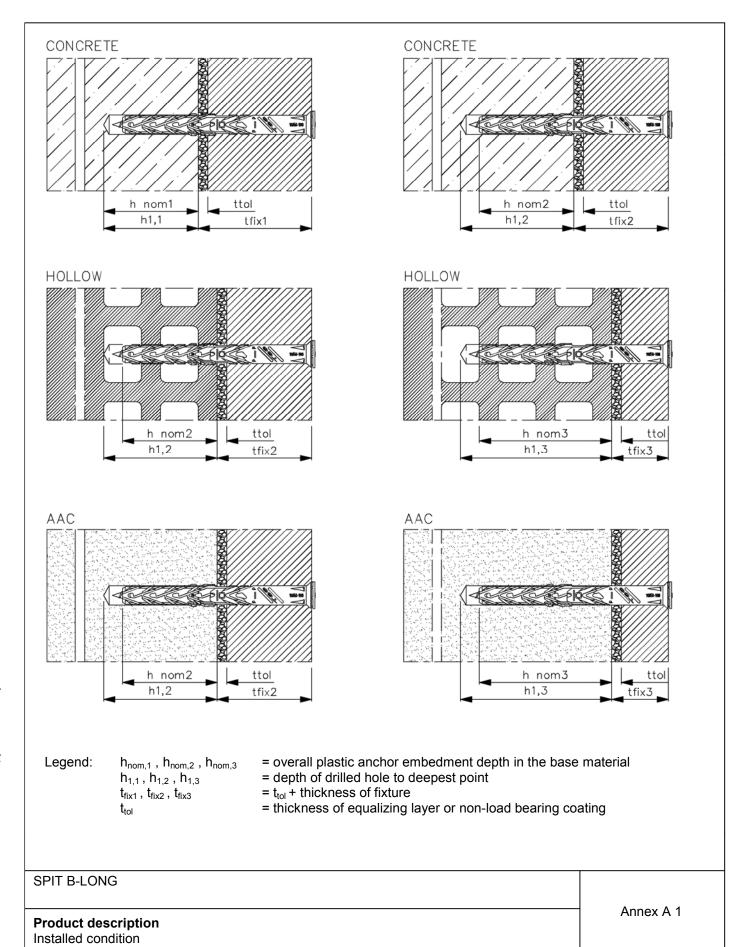
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 27 June 1997 (97/463/EC) (Official Journal of the European Communities L 198 of 25.07.1997, p. 31-32) the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use(s)	Level or class	System
Plastic anchors for use in concrete and masonry	For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems	-	2+

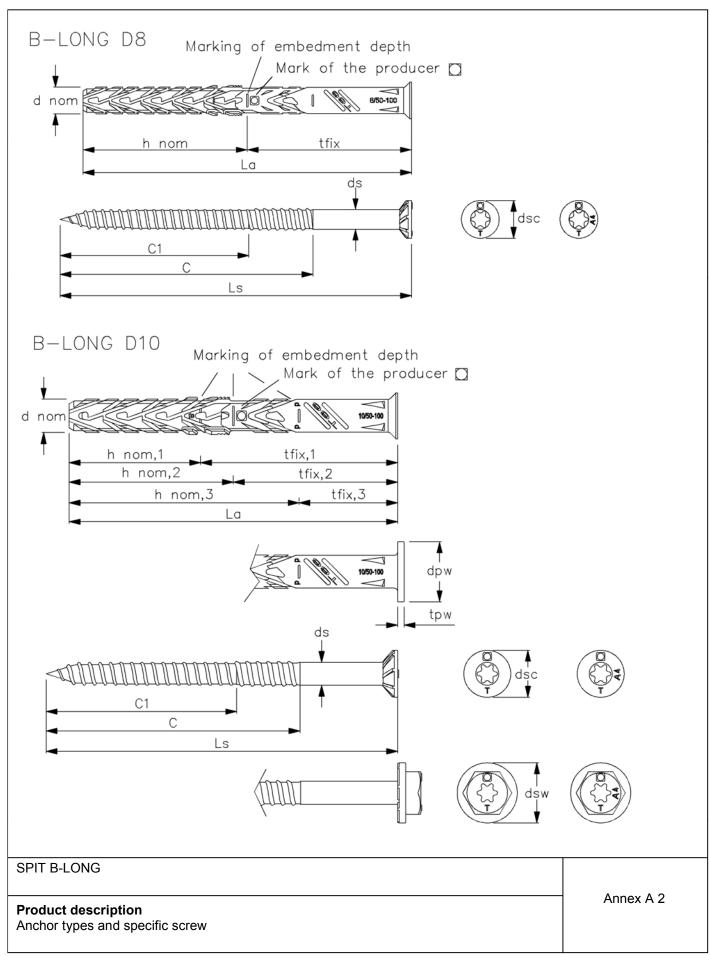
Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 28 February 2014 by Deutsches Institut für Bautechnik

Dr.-Ing. Karsten Kathage beglaubigt:

Vice-President E. Aksünger


Z7281.14 8.06.04-825/13

English translation prepared by DIBt

Deutsches Institut für **Bautechnik**

Table A1: Dimensions [mm]

Ancher Type		Anchor sleeve				Special screw				
Anchor Type	d_{nom}	h _{nom,1}	h _{nom,2}	h _{nom,3}	min L _a	max L _a	d _s	C ₁	С	Ls
B-LONG 8	8	-	50	ı	60	150	6	57	77 ¹⁾	67-157
B-LONG 10	10	40	50	70	60	300	7	57	77 ¹⁾	67-307

¹⁾ not valid for Ls = 67 mm

Table A2: Materials

Designation	Material
Anchor sleeve	polyamide, colour grey
Special screw	steel, zinc coated (electro galvanized) \geq 5 µm according EN ISO 4042: 2001-01 f _{yk} \geq 480N/mm²; f _{uk} \geq 600N/mm²
	stainless steel, material number 1.4401 / 1.4404 / 1.4571 / 1.4578 (A4 according to ISO 3506 - 01: 2010-04) $f_{yk} \ge 600N/mm^2 \; ; \; f_{uk} \ge 800N/mm^2$

SPIT B-LONG	
Product description Dimensions and materials	Annex A 3

Specifications of intended use

Anchorages subject to:

- · Static and quasi-static loads
- · Multiple fixing of non-structural applications

Base materials:

- Reinforced or unreinforced normal weight concrete with strength classes ≥ C12/15 (use category a), according to EN 206-1:2000.
- Solid brick masonry (use category b), according to Annex C 2.
 Note: The characteristic resistance is also valid for larger brick sizes and larger compressive strength of the masonry unit.
- Hollow brick masonry (use category c), according to Annex B 2, C 3, C 4 and C 5.
- Autoclaved aerated concrete (use category d), according to Annex C 6.
- Mortar strength class of the masonry M2.5 at minimum according to EN 998-2:2010.
- For other base materials of the use categories a, b, c and d (only B-LONG Ø10) the characteristic resistance of the anchor may be determined by job site tests according to ETAG 020 Edition March 2012, Annex B.

Temperature Range:

- c: -40°C to +50°C (max. short term temperature +50°C and max. long term temperature +30°C)
- b: -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

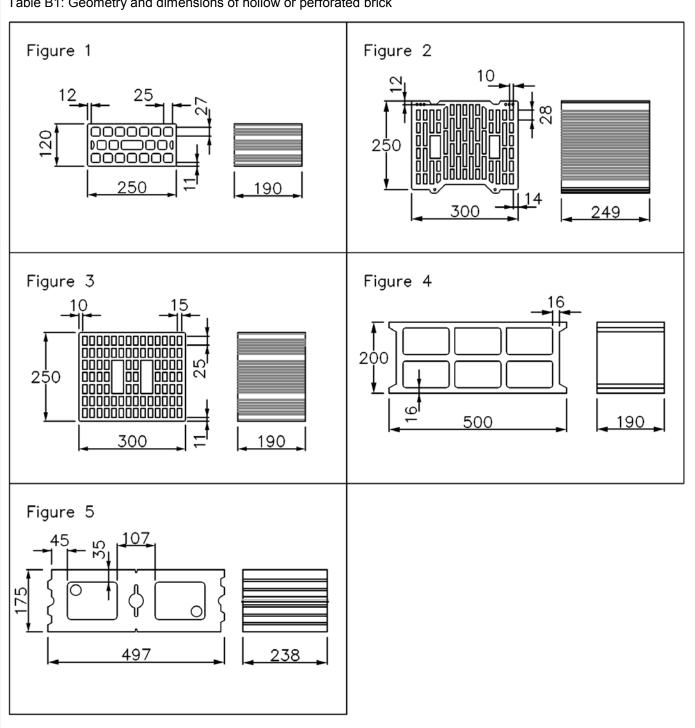
Use conditions (Environmental conditions):

- · Structures subject to dry internal conditions (zinc coated steel, stainless steel).
- Structures subject to external atmospheric exposure including industrial and marine environment (stainless steel).
- Structures subject to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with the ETAG 020 Edition March 2012, Annex C under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the nature and strength of the base materials and the dimensions of the anchorage members as well as of the relevant tolerances. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings for non-structural application, according to ETAG 020 Edition March 2012.


Installation:

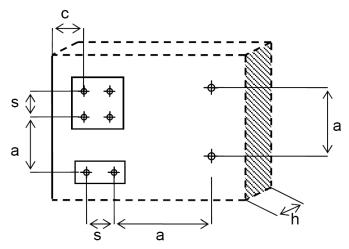
- Hole drilling by the drill modes given in Annexes C1 to C8 for use categories b, c and d; the influence of other drilling methods may be determined by job side tests according to ETAG 020 Edition March 2012, Annex B.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from -5°C to +40°C.
- Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks.

SPIT B-LONG	
	Annex B 1
Intended use	
Specifications	

Table B1: Geometry and dimensions of hollow or perforated brick

	SPIT B-LONG	
H		Annex B 2
	Intended use	
	Geometry and dimensions of hollow or perforated brick	

Table B2: Installation parameters


Anchor type				B-LONG 8	B-	LONG	10
Use category				a,b,c	а	b	c ¹⁾ ,d
Drilling hole diameter	d_0	[mm]	=	8		10	
Cutting diameter of drill bit	d _{cut}	[mm]	≤	8,45		10,45	
Depth of drilled hole to deepest point h _{1,1}	h _{1,1}	[mm]	≥	-	50	_	-
Overall plastic anchor embedment depth in the base material h _{nom,1}	h _{nom,1}	[mm]	2	-	40	-	-
Depth of drilled hole to deepest point h _{1,2}	h _{1,2}	[mm]	≥	60	60	60	60
Overall plastic anchor embedment depth in the base material $h_{\text{nom,2}}$	h _{nom,2}	[mm]	2	50	50	50	50
Depth of drilled hole to deepest point h _{1,3}	h _{1,3}	[mm]	≥	-	-	_	80
Overall plastic anchor embedment depth in the base material h _{nom,3}	h _{nom,3}	[mm]	2	-	-	-	70
Diameter of the clearance hole in the fixture	d _f	[mm]	≤	8,5		10,5	

 $^{^{1)}}$ For hollow or perforated masonry the influence of $h_{nom} > 50$ mm has to be detected by job side tests according to ETAG 020 Edition March 2012, Annex B

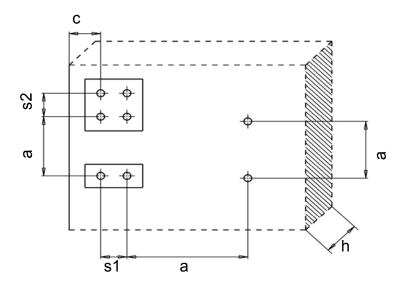
Table B3: Minimum thickness of member, edge distance and spacing in concrete

Anchor type		Minimum thickness of member	Characteristic edge distance	Minimum allowable spacing and edge distances
		h _{min} [mm]	C _{cr,N} [mm]	[mm]
B-LONG 8	concrete ≥ C16/20		50	s_{min} = 50 for c_{min} = 50
(h _{nom} =50)	concrete C12/15	100	70	s _{min} = 70 for c _{min} = 70
B-LONG 10	concrete ≥ C16/20		80	s _{min} = 60 for c _{min} = 50
(h _{nom} =40)	concrete C12/15		110	s _{min} = 85 for c _{min} = 70
B-LONG 10	concrete ≥ C16/20		100	s _{min} = 70 for c _{min} = 60
(h _{nom} =50)	concrete C12/15		140	s _{min} = 100 for c _{min} = 85

Scheme of distances and spacings in concrete

SPIT B-LONG	A D 2
Intended use Installation parameters, edge distances and spacings for use in concrete	Annex B 3

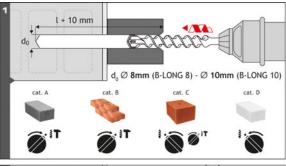
English translation prepared by DIBt

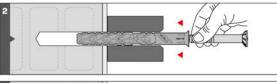

Table B4: Minimum distances and dimensions in masonry

Anchor type			B-LONG 8	B-LONG 10
Minimum thickness of member	h_{min}	[mm]	110	110
Single anchor				
Minimum allowable spacing	a_{min}	[mm]	250	250
Minimum allowable edge distance	c_{min}	[mm]	100	100
Anchor group				
Minimum allowable spacing perpendicular to free edge	S _{1,min}	[mm]	200	200
Minimum allowable spacing parallel to free edge	S _{2,min}	[mm]	400	400
Minimum allowable edge distance	c_{min}	[mm]	100	100

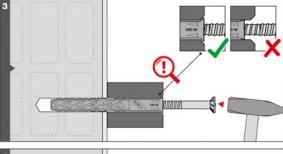
Table B5: Minimum distances and dimensions in AAC

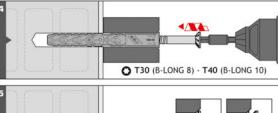
Anchor type			B-LONG 10
Minimum thickness of member	h _{min}	[mm]	100
Single anchor			
Minimum allowable spacing	a _{min}	[mm]	250
Minimum allowable edge distance	C _{min}	[mm]	100
Anchor group			
Minimum allowable spacing perpendicular to free edge	S _{1,min}	[mm]	200
Minimum allowable spacing parallel to free edge	S _{2,min}	[mm]	400
Minimum allowable edge distance	C _{min}	[mm]	100

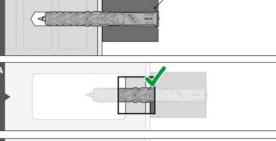

Scheme of distances and spacings in masonry and AAC


SPIT B-LONG	A D. 4
Intended use	Annex B 4
Edge distances and spacings for use in masonry and AAC	

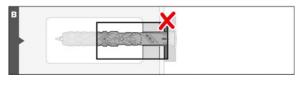
Installation instructions


Example for B-LONG 8 and B-LONG 10 with h_{nom} = 50 mm


Drill the hole considering the drilling method.
 Holes to be cleaned of drilling dust.



2) + 3) The plastic sleeve is inserted through the fixture by slight hammer blows.



4) + 5) The special screw is screwed in until the head of the screw touches the sleeve. The anchor is correct mounted, if there is no turn-through of the plastic sleeve in the drill hole and if slightly move on turning of the screw is impossible after the complete turn-in of the screw.

A) + B) Observation of the overall plastic anchor embedment depth.

SPIT B-LONG

Intended use

Installation instructions

Annex B 5

Z87658.13

Electronic copy of the ETA by DIBt: ETA-13/1068

Table C1: Characteristic bending resistance of the screw

Anchor type		B-LON	IG 8	B-LONG 10		
		galvanised steel	stainless steel	galvanised steel	stainless steel	
Characteristic bending resistance	M _{Rk,s} [Nm]	11,13	14,84	16,85	22,46	

Table C2: Characteristic resistance of the screw

Failure of expansion element (spec	B-LON	IG 8	B-LONG 10		
		galvanised steel	stainless steel	galvanised steel	stainless steel
Characteristic tension resistance	N _{Rk,s} [kN]	13,74	18,32	18,11	24,15
Characteristic shear resistance	V _{Rk,s} [kN]	6,87	9,16	9,06	12,08

Table C3: Characteristic resistance for use in concrete (hammer drilling)

Pull-out failure (plastic sleeve)	B-LONG 8		B-LONG 10		B-LONG 10		
		h _{nom} = 50		$h_{\text{nom},1} = 40$		h _{nom,2} = 50	
Temperature range		30/50 °C	50/80 °C	30/50 °C	50/80 °C	30/50 °C	50/80 °C
Concrete C12/15							
Characteristic tension resistance	N _{Rk,p} [kN]	2	2	2,5	2	4	3
Concrete ≥ C20/25							
Characteristic tension resistance	N _{Rk,p} [kN]	3	2,5	3,5	3	5,5	4

Table C4: Displacements under tension and shear loading in concrete and masonry

Anchor type		Tension load			Shear load		
	h _{nom}	F	δ_{N0}	δ_{N^∞}	F	δ_{V0}	δ∨∞
	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
concrete							
B-LONG 8	50	1,0	0,14	0,14	1,7	0,94	1,41
B-LONG 10	40	1,2	0,21	0,07	2,0	0,55	0,83
B-LONG 10	50	2,2	0,12	0,19	3,1	1,08	1,62
solid masonry							
B-LONG 8	50	1,0	0,12	0,24	1,0	0,83	1,25
B-LONG 10	50	1,0	0,39	0,77	1,0	0,83	1,25
hollow or perforated mason	ry						
B-LONG 8	50	0,26	0,57	1,14	0,34	0,29	0,43
B-LONG 10	50	0,34	0,55	1,10	0,34	0,29	0,43
B-LONG 10	70	0,26	0,09	0,18	0,34	0,29	0,43

SPIT B-LONG	
Performances Characteristic resistance of the screw, characteristic resistance for use in concrete	Annex C 1

Electronic copy of the ETA by DIBt: ETA-13/1068

Table C5: B-LONG 8 - characteristic resistance F_{Rk} in [kN] in solid masonry (use category "b")

Base Material	minimum size	Bulk	Minimum	Drill	Thickness	Charac	teristic	
[Supplier / Title]	(LxWxH)	density	density compressive n		of the	resistance F _{Rk}		
		class	strength		wall	h _{nom} =	50 mm	
		ρ	f _b		h			
	[mm]	[kg/dm³]	[N/mm²]		[mm]	30/50°C	50/80°C	
Clay brick			20		110	3	3	
EN 771-1:2011	237x110x54	≥ 1,6	20	hammer	240	3,5	3,5	
HD brick			10	Hallillei	110	2	2	
			10		240	2,5	2,5	
Clay brick			20		110	3	3	
EN 771-1:2011	240x115x71	≥ 1,8	240x115x71 ≥ 1,8	20	hammer	240	3,5	3,5
e.g. Wienerberger			10	Inamilie	110	2	2	
Poroton MZ-NF			10		240	2,5	2,5	

Table C6: B-LONG 10 - characteristic resistance F_{Rk} in [kN] in solid masonry (use category "b")

Base Material	minimum size Bulk Minimum Drill		Drill	Thickness	Charac	teristic	
[Supplier / Title]	(LxWxH)	density	compressive	method	of the	resistar	nce F _{Rk}
		class	strength		wall	h _{nom} = :	50 mm
		ρ	f _b		h		
	[mm]	[kg/dm³]	[N/mm²]		[mm]	30/50°C	50/80°C
Clay brick			20		110	3	3
EN 771-1:2011	237x110x54	≥ 1,6		hammer	240	3,5	3,5
e.g. Danesi			10	Hallillei	110	2	2
HD brick			10		240	2,5	2,5
Clay brick			20		110	3	3
EN 771-1:2011	240x115x71	≥ 1,8	20	hammer	240	3,5	3,5
e.g. Wienerberger			10	Ilailillei	110	2	2
Poroton MZ-NF			10		240	2,5	2,5

SPIT B-LONG

Performances
Characteristic resistance for use in solid masonry

Annex C 2

Table C7: B-LONG 8 - characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c") with $h_{nom,2}$ = 50 mm

Base Material	minimum size	Bulk	Minimum	Drill	Charact	teristic	
[Supplier / Title]	(LxWxH)	W x H) density compressive		method	resistan	esistance F _{Rk}	
		class	strength	ngth		50 mm	
					,		
		ρ	f _b				
	[mm]	[kg/dm³]	[N/mm²]		30/50°C	50/80°C	
Vertically perforated							
clay brick							
EN 771-1:2011	250x120x190	≥ 0,9	20	rotary	1,5	0,9	
e.g. Dosson Doppio Uni							
see Annex B 2; Fig. 1							
Vertically perforated							
clay brick							
EN 771-1:2011	300x250x249	≥ 0,8	12	rotary	2	1,5	
e.g. Wienerberger		-,-		, , , , ,	_	.,-	
Porotherm Bioplan							
see Annex B 2; Fig. 2							
Vertically perforated							
clay brick	000.050.400		40		4.0	0.0	
EN 771-1:2011	300x250x190	≥ 0,8	12	rotary	1,2	0,9	
e.g. Dosson Alveolater							
see Annex B 2; Fig. 3 Concrete							
hollow block							
EN 771-3:2011	500x200x200	≥ 0,9	4	rotary	1,5	0,9	
e.g. Fabemi Creux B40	30002000200	2 0,9	_	Totaly	1,5	0,9	
see Annex B 2; Fig. 4							
Concrete							
hollow block							
EN 771-3:2011	497x249x175	≥ 1,0	5	rotary	1,5	1,2	
e.g. KLB Plan Hohlblock	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,-		,	-,-	- ,—	
see Annex B 2; Fig. 5							

SPIT B-LONG	A 0.0
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 3

Table C8: B-LONG 10 - characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c") with $h_{nom,2}$ = 50 mm

Base Material	minimum size	Bulk	Minimum	Drill	Charac	teristic
[Supplier / Title]	(LxWxH)	density	compressive	method	resistar	ice F _{Rk}
		class	strength		h _{nom.2} =	50 mm
					,_	
		ρ	f _b			
	[mm]	[kg/dm³]	[N/mm²]		30/50°C	50/80°C
Vertically perforated						
clay brick						
EN 771-1:2011	250x120x190	≥ 0,9	20	rotary	1,5	1,2
e.g. Dosson Doppio Uni						
see Annex B 2; Fig. 1						
Vertically perforated						
clay brick						
EN 771-1:2011	300x250x249	≥ 0,8	12	rotary	2	1,5
e.g. Wienerberger		_ 0,0		,	_	.,0
Porotherm Bioplan						
see Annex B 2; Fig. 2						
Vertically perforated						
clay brick						
EN 771-1:2011	300x250x190	≥ 0,8	12	rotary	1,2	0,9
e.g. Dosson				,	•	
Alveolater						
see Annex B 2; Fig. 3 Concrete						
hollow block						
EN 771-3:2011						
e.g. Fabemi	500x200x200	≥ 0,9	4	rotary	1,2	0,9
Creux B40						
see Annex B 2; Fig. 4						
Concrete						
hollow block						
EN 771-3:2011	497x249x175	≥ 1,0	5	rotary	1,5	1,2
e.g. KLB Plan Hohlblock		,			,	,
see Annex B 2; Fig. 5						

SPIT B-LONG	A 0.4
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 4

English translation prepared by DIBt

Table C9: B-LONG 8 - characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c") with $h_{nom,3}$ = 70 mm

Base Material	minimum size	Bulk	Minimum	Drill	Charac	teristic
[Supplier / Title]	(L x W x H)	density	compressive	method	resistance	e F _{Rk} [kN]
		class	strength		$h_{\text{nom,3}} = 70 \text{ mm}$	
		ρ	f _b			
	[mm]	[kg/dm³]	[N/mm²]		30/50°C	50/80°C
Vertically perforated						
clay brick						
EN 771-1:2011	300x250x190	≥ 0,8	12	rotary	1,2	0,9
e.g. Dosson Alveolater						
see Annex B 2; Fig. 3						

Table C10: B-LONG 10 - characteristic resistance F_{Rk} in [kN] in hollow or perforated masonry (use category "c") with $h_{\text{nom},3}$ = 70 mm

Base Material	minimum size	Bulk	Minimum	Drill	Charac	teristic
[Supplier / Title]	(L x W x H)	density	compressive	method	resistance	F _{Rk} [kN]
		class	strength		$h_{\text{nom},3} = 70 \text{ mm}$	
		ρ	f _b			
	[mm]	[kg/dm³]	[N/mm²]		30/50°C	50/80°C
Vertically perforated						
clay brick						
EN 771-1:2011	300x250x190	≥ 0,8	12	rotary	1,2	0,9
e.g. Dosson Alveolater						
see Annex B 2; Fig. 3						

SPIT B-LONG	
Performances Characteristic resistance for use in hollow or perforated masonry	Annex C 5

Table C11: B-LONG 10 characteristic resistance F_{Rk} in [kN] in autoclaved aerated concrete (AAC) (use category "d")

Base material	Bulk density	Minimum compressive strength	Drill method	Characteristic resistance F _{Rk} [kN]		Characteristic resistance F _{Rk} [kN]	
	ρ	f _{ck}		B-LONG 10 h _{nom,2} = 50 mm		B-LONG 10 h _{nom.3} = 70 mm	
	[kg/m³]	[N/mm²]		30/50°C	50/80 °C	30/50°C	50/80°C
LS AAC YTONG "clima" block EN 771-4:2011 minimum size [cm] 62,5x25x24	≥ 350	2	rotary	0,6	0,3	0,6	0,5
HS AAC YTONG "sismico" block EN 771-4:2011 minimum size [cm] 62,5x25x24	≥ 500	4	rotary	1,5	1,2	2	1,5

Table C12: Displacements under tension and shear loading in autoclaved aerated concrete AAC

Anchor type	Tension loa	nd		Shear load		
B-LONG 10	F	δ_{N0}	δ _{N∞}	F	δ_{V0}	δ _{∨∞}
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
LS AAC YTONG "clima" block EN 771-4:2011 minimum size [cm] 62,5x25x24	0,2	0,08	0,16	0,2	0,43	0,64
HS AAC YTONG "sismico" block EN 771-4:2011 minimum size [cm] 62,5x25x24	0,5	0,46	0,92	0,5	1,43	2,14

SPIT B-LONG	A
Performances Characteristic resistance and displacements for use in autoclaved aerated concrete	Annex C 6