

Public-law institution jointly founded by the federal states and the Federation

European Technical Assessment Body for construction products

European Technical Assessment

ETA-24/1152 of 13 January 2025

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the **European Technical Assessment:**

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Fasteners for use in concrete for redundant non-structural systems

ESSVE AB Borgarfjordsgatan 18 SE-164 40 Kista **SCHWEDEN**

ESSVE Plants

16 pages including 3 annexes which form an integral part of this assessment

EAD 330747-00-0601, Edition 06/2018

European Technical Assessment ETA-24/1152

English translation prepared by DIBt

Page 2 of 16 | 13 January 2025

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 16 | 13 January 2025

Specific Part

1 Technical description of the product

The ESSVE Concrete screw EUS2, EUS A4, EUS HCR of sizes 5 and 6 mm is an anchor made of galvanised steel respectively steel with zinc flake coating and of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Class A1		
Resistance to fire	See Annex C3		

3.2 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B2, Annex C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330747-00-0601, the applicable European legal act is: [97/161/EC].

The system to be applied is: 2+

European Technical Assessment ETA-24/1152

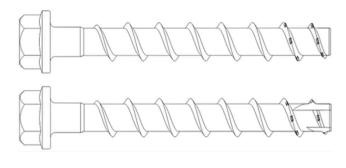
English translation prepared by DIBt

Page 4 of 16 | 13 January 2025

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Dipl.-Ing. Beatrix Wittstock beglaubigt:
Head of Section Tempel


Issued in Berlin on 13 January 2025 by Deutsches Institut für Bautechnik

Product in installed condition

ESSVE EUS2, EUS A4, EUS HCR (size 5 and 6)

- Galvanized carbon steel
- Zinc flakes coated carbon steel

- Stainless steel A4
- High corrosion resistant steel HCR

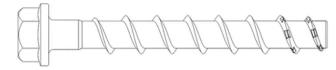
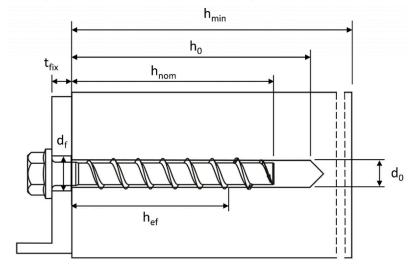



Figure illustrating concrete screw with hexagon head and fixture

d₀ = nominal drill hole diameter

t_{fix} = thickness of fixture

d_f = clearance hole diameter

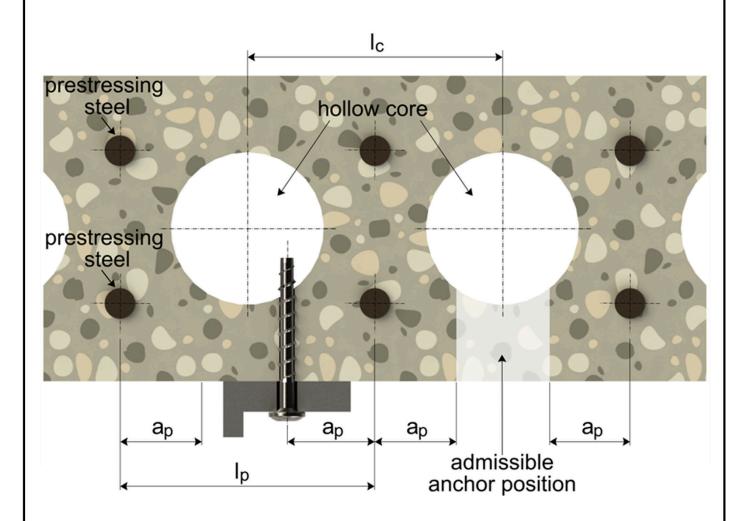
h_{min} = minimum thickness of member

 h_{nom} = nominal embedment depth

 h_0 = drill hole depth

h_{ef} = effective embedment depth

ESSVE Concrete screw EUS2, EUS A4, EUS HCR


Product description

Product in installed condition

Annex A1

Installed condition in precast prestressed hollow core slabs

Important ratio:
$$\frac{w}{e} \leq 4$$
, 2

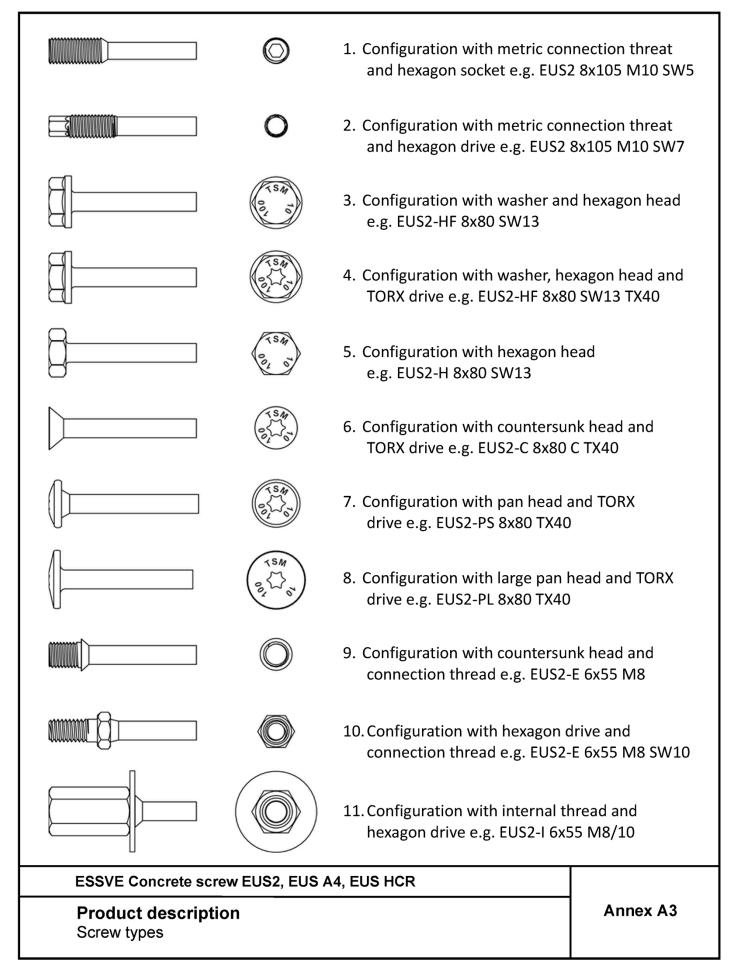
w = core width

e = web thickness

I_c = core distance ≥ 100 mm

l_p = prestressing steel ≥ 100 mm

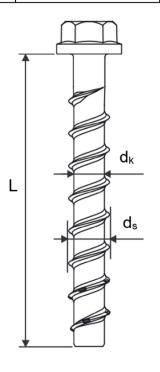
 a_p = distance between anchor position and prestressing steel \geq 50mm


ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Product description

Installed condition in precast prestressed hollow core slabs

Annex A2


Table 1: Material

Part	Product name	Material
all	EUS2	- Steel EN 10263-4:2017 galvanized acc. to EN ISO 4042:2018 - Zinc flake coating according to EN ISO 10683:2018 (≥5μm)
types	EUS A4	1.4401; 1.4404; 1.4571; 1.4578
	EUS HCR	1.4529

		Nominal char	acteristic steel	Rupture
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm ²]	elongation A ₅ [%]
	EUS2			
all types	EUS A4	560	700	≤8
lypes	EUS HCR			

Table 2: Dimensions

Anchor size			5	6
Screw length	≤L	[mm]	2	200
Core diameter	d _k	[mm]	4,0	5,1
Thread outer diameter	ds	[mm]	6,5	7,5

Marking:

EUS2
Screw type: TSM
Screw size: 10
Screw length: 100

EUS A4
Screw type: TSM
Screw size: 10
Screw length: 100
Material: A4

EUS HCR
Screw type: TSM
Screw size: 10
Screw length: 100
Material: HCR

Marking "k" or "x" for anchors with connection thread and h_{nom}= 35mm

ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Product description

Material, Dimensions and markings

Annex A4

Z1003354.24

Specification of Intended use

Anchorages subject to:

- static and quasi static loads
- Used only for multiple use for non-structural application according to EN 1992-4:2018
- Used for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs): size 5 and 6
- Used for anchorages in prestressed hollow core slabs: size 6

Base materials:

- Compacted reinforced and compacted unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- · Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A4, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A4, screw with marking HCR: CRC V

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055,
 Version February 2018.
- The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B2, Table 3.

Installation:

- Hammer drilling or hollow drilling.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.

ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Intended use
Specification

Annex B1

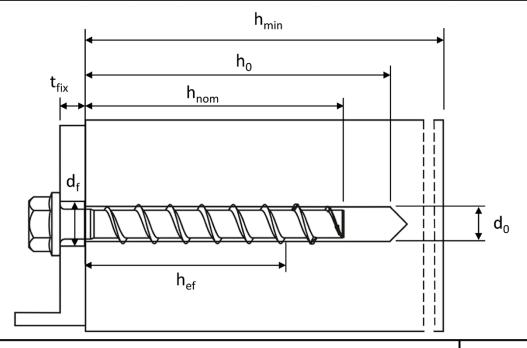
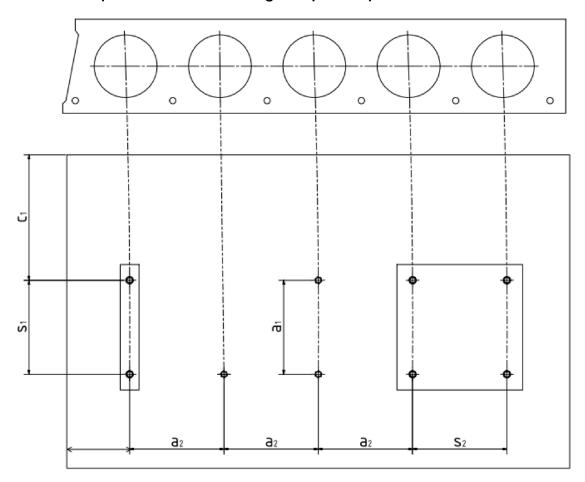


Table 3: Installation parameters

Concrete screw size			5	6	
Nominal embedment depth		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal embedment depth		[mm]	35	35	55
Nominal drill hole diameter	d ₀	[mm]	5	(5
Cutting diameter of drill bit	d _{cut} ≤	[mm]	5,40	6,	40
Drill hole depth	h₀≥	[mm]	40	40 60	
Clearance hole diameter	Clearance hole diameter $d_f \le$		7	8	
Installation torque (version with connection thread) $T_{inst} \le$		[Nm]	8	1	0
Recommended torque impact		[NIma]	Max. torque according to manufacturer's instruction		
screw driver		[Nm]	110	160	

Table 4: Minimum thickness of member, minimum edge distance and minimum spacing

Concrete screw size			5	6		
Naminal amb adment denth		h _{nom1}	h _{nom1}	h _{nom1}	h _{nom2}	
Nominal embedment depth		[mm]	35	35	55	
Minimum thickness of member	h _{min}	[mm]	80	80	100	
Minimum edge distance	C _{min}	[mm]	35	35	40	
Minimum spacing	Smin	[mm]	35	35	40	



ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Intended use Installation parameters **Annex B2**

Installation parameters for anchorages in precast prestressed hollow core slabs

 c_1 , c_2 = edge distance

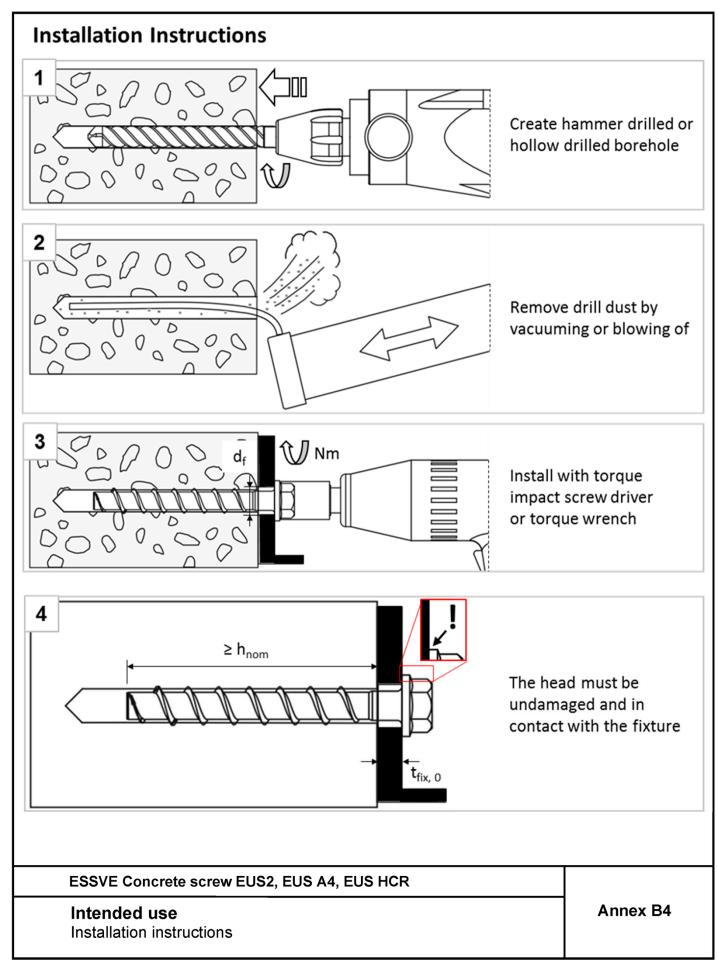
 s_1 , s_2 = anchor spacing

 a_1 , a_2 = distance between anchor groups

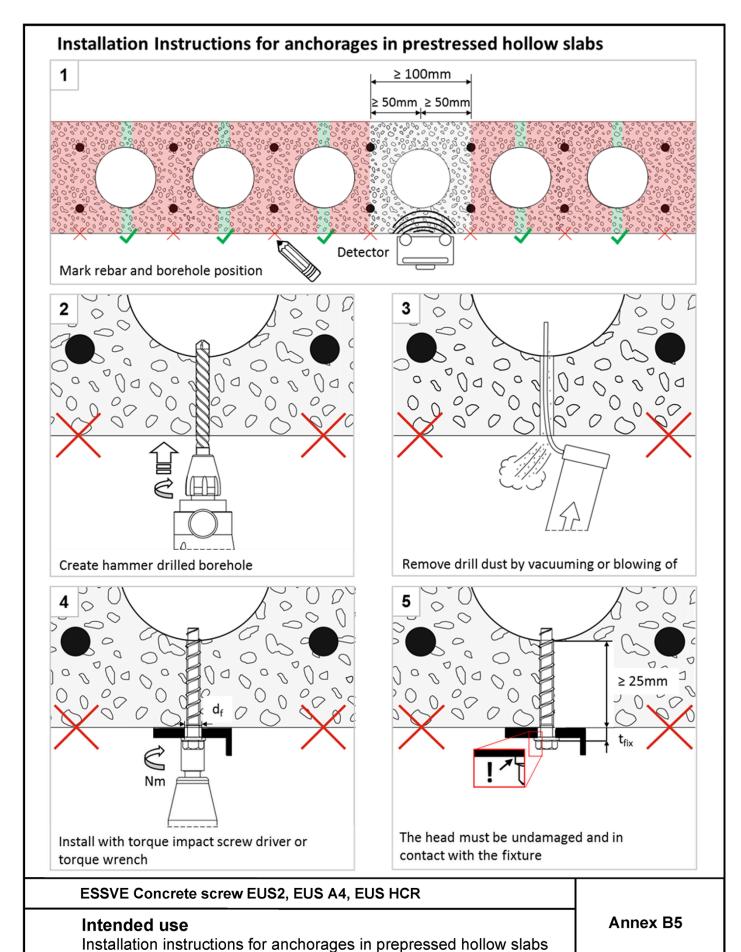
 c_{min} = minimum edge distance \geq 100 mm

 s_{min} = minimum anchor spacing ≥ 100 mm

 a_{min} = minimum distance between anchor groups \geq 100 mm


ESSVE Concrete screw EUS2, EUS A4, EUS HCR

Intended use


Installation parameters for anchorages in precast prestressed hollow slabs

Annex B3

Concrete scr	rew size			5	(5
	1 . 1 .1		h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}
Nominal emp	edment depth		[mm]	35	35	55
Steel failure	for tension an	d shear	loadin	g		
	tension load	N _{Rk,s}	[kN]	8,7	14	1,0
Partial factor		γ _{Ms,N}	[-]		1,5	
		V _{Rk,s}	[kN]	4,4	7,	,0
		γ _{Ms,V}	[-]		1,25	
Ductility factor		k ₇	[-]		0,8	
		M ⁰ _{Rk,s}	[Nm]	5,3	10),9
Pull-out fail	ıre					
Characteristic	cracked	N _{Rk,p}	[kN]	1,5	3,0	7,5
tension load C20/25	uncracked	N _{Rk,p}	[kN]	1,5	3,0	7,5
Increasing	C25/30				1,12	
factor for	C30/37] Ψ			1,22	
$N_{Rk,pp} =$	C40/50	Ψ_{c}	[-]		1,41	
N _{Rk,p(C20/25)} * ψ ₀	C50/60				1,58	
Concrete fai	lure: Splitting 1	failure,	concret	te cone failure and	pry-out failure	
Effective emb	edment depth	h _{ef}	[mm]	27	27	44
k factor	cracked	k ₁ =k _{cr}	[-]		7,7	
k-factor	uncracked	k ₁ = k _{ucr}	[-]		11,0	
Concrete	spacing	S _{cr,N}	[mm]		3 x h _{ef}	
cone failure	edge distance	C _{cr,N}	[mm]		1,5 x h _{ef}	
	resistance	N ⁰ Rk,Sp	[kN]		min(N ⁰ _{Rk,c} ; N _{Rk,p})	
Splitting failure	spacing	S _{cr,Sp}	[mm]	120	120	160
Tantare	edge distance	C _{cr,Sp}	[mm]	60	60	80
Factor for pry	/-out failure	k ₈	[-]		1,0	
Installation fa	actor	γinst	[-]	1,2	1,0	1,0
Concrete ed	ge failure					
	th in concrete	I _f = h _{ef}	[mm]	27	27	44
	er diameter of	d _{nom}	[mm]	5 6		
screw			, ,			
	- 0	5110	0 5110	A 4 5110 110D	<u> </u>	
ESSVE	E Concrete scr	ew EUS	2, EUS	A4, EUS HUR		
Df -	rmances					Annex C1

Table 6: Characteristic values of resistance in precast prestressed hollow core slabs C30/37 to C50/60

Concrete screw size			6				
Bottom flange thickness	d _b	[mm]	≥ 25	≥ 30	≥ 35		
Characteristic resistance	F ⁰ Rk	[kN]	1	2	3		
Edge distance	Ccr	[mm]	100				
Spacing	Scr	[mm]	200				
Installation factor	γinst	[-]	1,0				

Table 7: Limiting distances for application in precast prestressed hollow core slabs

Distances for application in	precas	st prest	ressed hollow core slabs					
Minimum edge distance	C _{min}	[mm]	≥ 100					
Minimum anchor spacing	S _{min}	[mm]	≥ 100					
Minimum distance between anchor groups	a _{min}	[mm]	≥ 100					
Distance of core	l _c	[mm]	≥ 100					
Distance of prestressing steel	Ip	[mm]	≥ 100					
Distance between anchor position and prestressing steel	a _p	[mm]	≥ 50					

ESSVE Concrete screw EUS2, EUS A4, EUS HCR	
Performances Characteristic values and limiting distances in precast prestressed hollow core slabs	Annex C2

Mominal embedment depth		oncrete screw size						6	
Steel failure for tension and shear load (F _{Rk,5,fi} = N _{Rk,5,fi}) = V _{Rk,5,fi} V _{Rk,5,fi}	Material				EUS2	EL	EUS A4	EUS A4/HCR	
[mm 35 55 35 55 55 55 55	Nominal ombo	dment dent	th	h _{nom}	h _{nom1}	h _{nom1}	h _{nom2}	h _{nom1}	h _{nom}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>					55	35	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Steel failure fo	or tension	and shear l	oad (F _{Rk,}				Γ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		R30	F _{Rk,s,fi30}	[kN]	0,8	0	,9	1,2	<u>.</u>
Characteristic Resistance $= \frac{R30 - R_{K,s,fi120}}{R30} = \frac{[kN]}{N^0} = \frac{0,3}{N^0} = \frac{0,4}{N^0} = \frac{0,8}{N^0} = \frac{0,9}{N^0} = \frac{0,9}{N^0$		R60	F _{Rk,s,fi60}	[kN]	0,6	0	,8	1,2	<u>.</u>
Resistance R30 M ⁰ R _{K,5,fi30} [Nm] 0,5 0,7 0,9 R60 M ⁰ R _{K,5,fi30} [Nm] 0,4 0,6 0,9 R90 M ⁰ R _{K,5,fi30} [Nm] 0,2 0,5 0,9 R120 M ⁰ R _{K,5,fi320} [Nm] 0,2 0,3 0,6 Pull-out failure R30-R90 N _{Rk,p,fi} [kN] 0,375 0,75 1,875 0,75 1,875 R120 N _{Rk,p,fi} [kN] 0,375 0,6 1,5 0,6		R90	F _{Rk,s,fi90}	[kN]	0,4	0	,6	1,2	<u>!</u>
$ \begin{array}{ c c c c }\hline R60 & M^0_{Rk,s,fi60} & [Nm] & 0,4 & 0,6 & 0,9 \\\hline R90 & M^0_{Rk,s,fi90} & [Nm] & 0,2 & 0,5 & 0,9 \\\hline R120 & M^0_{Rk,s,fi120} & [Nm] & 0,2 & 0,3 & 0,6 \\\hline \hline Pull-out failure & & & & & & \\\hline Characteristic Resistance & R30-R90 & N_{Rk,p,fi} & [kN] & 0,375 & 0,75 & 1,875 & 0,75 & 1,875 \\\hline R120 & N_{Rk,p,fi} & [kN] & 0,3 & 0,6 & 1,5 & 0,6 & 1,5 \\\hline Concrete cone failure & & & & & \\\hline Characteristic R30-R90 & N^0_{Rk,c,fi} & [kN] & 0,65 & 0,65 & 2,21 & 0,65 & 2,2 \\\hline R120 & N^0_{Rk,c,fi} & [kN] & 0,52 & 0,52 & 1,76 & 0,52 & 1,75 \\\hline Edge distance & & & & & \\\hline R30-R120 & & & & \\\hline R30-R120 & & & & & \\\hline R30-R120 & & & & & \\\hline R3$	Characteristic	R120	F _{Rk,s,fi120}	[kN]	0,3	0	,4	0,8	3
$\begin{array}{ c c c c }\hline R90 & M^0_{Rk,s,fi90} & [Nm] & 0,2 & 0,5 & 0,9 \\\hline R120 & M^0_{Rk,s,fi120} & [Nm] & 0,2 & 0,3 & 0,6 \\\hline \hline Pull-out failure \\\hline Characteristic Resistance & R30-R90 & N_{Rk,p,fi} & [kN] & 0,375 & 0,75 & 1,875 & 0,75 & 1,875 \\\hline R120 & N_{Rk,p,fi} & [kN] & 0,3 & 0,6 & 1,5 & 0,6 & 1,5 \\\hline Concrete cone failure \\\hline Characteristic R30-R90 & N^0_{Rk,c,fi} & [kN] & 0,65 & 0,65 & 2,21 & 0,65 & 2,2 \\\hline Resistance & R120 & N^0_{Rk,c,fi} & [kN] & 0,52 & 0,52 & 1,76 & 0,52 & 1,7 \\\hline Edge distance \\\hline R30-R120 & C_{cr,fi} & [mm] & 2 \times h_{ef} \\\hline In case of fire attack from more than one side, the minimum edge distance shall be $\geq 300 \text{mm}. \\\hline Spacing \\\hline R30-R120 & S_{cr,fi} & [mm] & 4 \times h_{ef} \\\hline Pry-out failure \\\hline R30-R120 & k_8 & [-] & 1,0 \\\hline The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value. 1 Not for application in prestressed hollow core slabs \\\hline \end{array}$	Resistance	R30	M ⁰ Rk,s,fi30	[Nm]	0,5	0	,7	0,9)
R120 $M^0_{Rk,s,fi120}$ [Nm] 0,2 0,3 0,6 Pull-out failure Characteristic R30-R90 $N_{Rk,p,fi}$ [kN] 0,375 0,75 1,875 0,75 1,876 Resistance R120 $N_{Rk,p,fi}$ [kN] 0,3 0,6 1,5 0,6 1,5 Concrete cone failure Characteristic R30-R90 $N^0_{Rk,c,fi}$ [kN] 0,65 0,65 2,21 0,65 2,2 Resistance R120 $N^0_{Rk,c,fi}$ [kN] 0,52 0,52 1,76 0,52 1,77 Edge distance R30 - R120 $C_{cr,fi}$ [mm] 2 x h _{ef} In case of fire attack from more than one side, the minimum edge distance shall be ≥300mm. Spacing R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 4 x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 7 x x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 7 x x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 8 x x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 9 x x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 9 x x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 9 x x h _{ef} Pry-out failure R30 - R120 $S_{cr,fi}$ [mm] 9 x x h _{ef}		R60	M ⁰ Rk,s,fi60	[Nm]	0,4	0	,6	0,9)
Pull-out failure Characteristic Resistance R30-R90 R120 N _{Rk,p,fi} [kN] 0,375 0,75 1,875 0,75 1,875 0,75 1,875 0,75 1,875 Concrete cone failure Characteristic R30-R90 N ⁰ _{Rk,c,fi} R120 N ⁰ _{Rk,c,fi} [kN] 0,65 0,65 2,21 0,65 2,2 Resistance R120 N ⁰ _{Rk,c,fi} [kN] 0,52 0,52 1,76 0,52 1,77 Edge distance R30-R120 C _{cr,fi} [mm] 2 x h _{ef} In case of fire attack from more than one side, the minimum edge distance shall be ≥300mm. Spacing R30-R120 S _{cr,fi} [mm] 4 x h _{ef} Pry-out failure R30-R120 k ₈ [-] 1,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value. 1) Not for application in prestressed hollow core slabs		R90	M ⁰ Rk,s,fi90	[Nm]	0,2	0	,5	0,9)
Characteristic Resistance R30-R90 N _{Rk,p,fi} [kN] 0,375 0,75 1,875 0,75 1,875 0,75 1,876 R120 N _{Rk,p,fi} [kN] 0,3 0,6 1,5 0,6 1,5 Concrete cone failure Characteristic R30-R90 R120 N ⁰ _{Rk,c,fi} [kN] 0,65 0,65 2,21 0,65 2,2 R120 N ⁰ _{Rk,c,fi} [kN] 0,52 0,52 1,76 0,52 1,76 Concrete cone failure R120 R120 N ⁰ _{Rk,c,fi} [kN] 0,65 0,65 2,21 0,65 2,2 1,76 0,52 1,76 Concrete cone failure R30 - R120 Concrete cone failure R30 - R120 Son fire attack from more than one side, the minimum edge distance shall be ≥300mm. Spacing R30 - R120 Son fire attack from more than one side, the minimum edge distance shall be ≥300mm. Spacing R30 - R120 Son fire attack from more than one side, the minimum edge distance shall be ≥300mm. Spacing R30 - R120 Son fire mm] 4 × h _{ef} Pry-out failure R30 - R120 K ₈ [-] 1,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value. 1) Not for application in prestressed hollow core slabs		R120	M ⁰ Rk,s,fi120	[Nm]	0,2	0	,3	0,6	
Resistance Riscontracted Risport Resistance Risport Resistance Risport Resistance Risport Ri	Pull-out failur	е							
Concrete cone failure Characteristic R30-R90 N ⁰ _{Rk,c,fi} [kN] 0,65 0,65 2,21 0,65 2,2 Resistance R120 N ⁰ _{Rk,c,fi} [kN] 0,52 0,52 1,76 0,52 1,7 Edge distance R30 - R120 c _{cr,fi} [mm] 2 x h _{ef} In case of fire attack from more than one side, the minimum edge distance shall be ≥300mm. Spacing R30 - R120 s _{cr,fi} [mm] 4 x h _{ef} Pry-out failure R30 - R120 k ₈ [-] 1,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value. 1) Not for application in prestressed hollow core slabs		R30-R90	N _{Rk,p,fi}	[kN]	0,375	0,75	1,875	0,75	1,87
Characteristic R30-R90 N ⁰ Rk,c,fi [kN] 0,65 0,65 2,21 0,65 2,2 Resistance R120 N ⁰ Rk,c,fi [kN] 0,52 0,52 1,76 0,52 1,7 Edge distance R30 - R120		R120	N _{Rk,p,fi}	[kN]	0,3	0,6	1,5	0,6	1,5
Resistance R120 $N^0_{Rk,c,fi}$ [kN] 0,52 0,52 1,76 0,52 1,77 Edge distance R30 - R120 $c_{cr,fi}$ [mm] $2 \times h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm. Spacing R30 - R120 $c_{cr,fi}$ [mm] $c_{cr,fi}$ [mm] $c_{cr,fi}$ c_{c	Concrete con	e failure							
Edge distance R30 - R120 $c_{cr,fi}$ [mm] $2 \times h_{ef}$ In case of fire attack from more than one side, the minimum edge distance shall be ≥ 300 mm. Spacing R30 - R120 $s_{cr,fi}$ [mm] $4 \times h_{ef}$ Pry-out failure R30 - R120 k_8 [-] 1,0 The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value. 1) Not for application in prestressed hollow core slabs		R30-R90	N ⁰ Rk,c,fi	[kN]	0,65	0,65	2,21	0,65	2,2
R30 - R120	Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,52	0,52	1,76	0,52	1,7
In case of fire attack from more than one side, the minimum edge distance shall be ≥300mm. Spacing R30 - R120	Edge distance	ı							
Spacing R30 - R120 Scr,fi [mm] 4 x hef Pry-out failure R30 - R120 k ₈ [-] The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value. 1) Not for application in prestressed hollow core slabs	R30 - R120		C _{cr,fi}	[mm]		2	x h _{ef}		
R30 - R120 Pry-out failure R30 - R120 R	In case of fire a	ttack from	more than c	ne side,	the minimum ed	ge distanc	e shall be	≥300mm.	
Pry-out failure R30 - R120	Spacing								
R30 - R120	R30 - R120		S _{cr,fi}	[mm]	4 x h _{ef}				
The anchorage depth has to be increased for wet concrete by at least 30 mm compared to the given value. 1) Not for application in prestressed hollow core slabs	Pry-out failure								
value. 1) Not for application in prestressed hollow core slabs	R30 - R120		k ₈	[-]			1,0		
	_	depth has	to be increas	sed for w	et concrete by at	least 30 r	mm compa	ared to the g	given
ESSVE Concrete screw EUS2, EUS A4, EUS HCR	1)	ation in prest	ressed hollov	w core sla	bs				
	* Not for applica								

Z1003354.24 8.06.01-252/24

Characteristic values under fire exposure