



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

## ETA-07/0211 of 19 May 2016

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

fischer Bolt Anchor FBN II, FBN II A4

Torque controlled expansion anchor of sizes M6, M8, M10, M12, M16 and M20 for use in uncracked concrete

fischerwerke GmbH & Co. KG Klaus-Fischer-Straße 1 72178 Waldachtal DEUTSCHLAND

fischerwerke

14 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.



## European Technical Assessment ETA-07/0211

Page 2 of 14 | 19 May 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.



## European Technical Assessment ETA-07/0211

Page 3 of 14 | 19 May 2016

English translation prepared by DIBt

## **Specific Part**

### 1 Technical description of the product

The fischer Bolt anchor FBN II and FBN II A4 is an anchor made of zinc plated, hot-dip galvanised or stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion.

Product and product description is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                          | Performance           |
|-------------------------------------------------------------------|-----------------------|
| Characteristic resistance for tension and shear loads in concrete | See Annex C 1 and C 2 |
| Edge distances and spacing                                        | See Annex C 1 and C 2 |
| Displacements under tension and shear loads                       | See Annex C 3         |

### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                  |
|--------------------------|----------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for Class A1 |
| Resistance to fire       | No performance determined (NPD)              |

#### 3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1



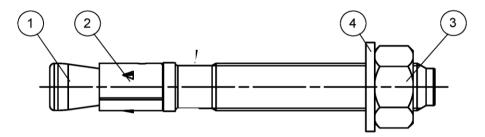


## **European Technical Assessment ETA-07/0211**

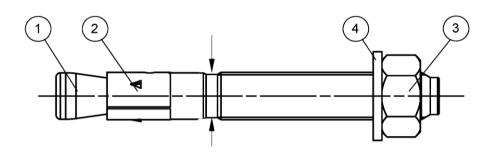
Page 4 of 14 | 19 May 2016

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 19 May 2016 by Deutsches Institut für Bautechnik


Uwe Benderbeglaubigt:Head of DepartmentTempel



## Cone bolt manufactured by cold - forming:



## Cone bolt manufactured by turning:





- ① Cone bolt (cold formed or turned)
- ② Expansion sleeve
- 3 Hexagon nut
- 4 Washer

h<sub>ef</sub> = Effective anchorage depth

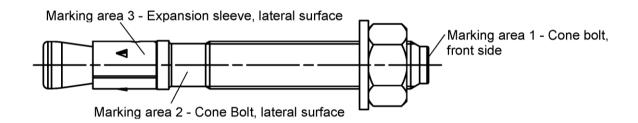
 $t_{fix}$  = Thickness of fixture

 $h_1$  = Drill hole depth

h<sub>min</sub> = Thickness of concrete member

T<sub>inst</sub> = Required torque moment

fischer Bolt Anchor FBN II, FBN II A4


## Product description Installed condition

Annex A 1

Z24097.16



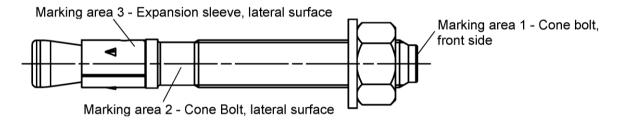
## FBN II for use with standard and reduced anchorage depth (hef, sta and hef, red)



Product marking, example: FBN II 12/10 A4

works symbol | type of anchor placed on marking area 2 or marking area 3

thread size / thickness of fixture (t<sub>fix</sub>) for h<sub>ef, sta</sub>


identification A4

placed on marking area 2

Table A1: Letter-code on marking area 1 and maximum thickness of fixture t<sub>fix</sub>:

| marking                                           |         | Α  | В  | O  | D  | Е  | 무  | G  | Ι  | _  | K  | Ы  | М  | N   | 0   | Р   | R   | S   | Т   | $\supset$ | ٧   | W   | Χ   | Υ   | Z   |
|---------------------------------------------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----|
| max. t <sub>fix</sub><br>for h <sub>ef, sta</sub> | M6-M20  | 5  | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60 | 70 | 80  | 90  | 100 | 120 | 140 | 160 | 180       | 200 | 250 | 300 | 350 | 400 |
|                                                   | M8, M10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 70 | 80 | 90  | 100 | 110 | 130 | 150 | 170 | 190       | 210 | 260 | 310 | 360 | 410 |
| max. t <sub>fix</sub><br>for h <sub>ef. red</sub> | M12, 16 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 75 | 85 | 95  | 105 | 115 | 135 | 155 | 175 | 195       | 215 | 265 | 315 | 365 | 415 |
| TOI Tief, red                                     | M20     | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 85 | 95 | 105 | 115 | 125 | 145 | 165 | 185 | 205       | 225 | 275 | 325 | 375 | 425 |

## FBN II K for use with reduced anchorage depth only (hef, red):



 thread size / thickness of fixture (t<sub>fix</sub>) identification K for h<sub>ef, red</sub> | identification A4 placed on marking area 2

**Table A2:** Letter-code on marking area 1 and maximum thickness of fixture t<sub>fix</sub>:

| marking                                               | -A- | -B- | Ç- | -D- | -E- | Ŧ- | Ģ  | ţ  | - - | -K- | <u>-</u> - | -M- | -N- | <del></del> | -P- | -R- | -S- | -T- | <u>-</u> | -V- | -W- | -X- | -Y- | -Z- |
|-------------------------------------------------------|-----|-----|----|-----|-----|----|----|----|-----|-----|------------|-----|-----|-------------|-----|-----|-----|-----|----------|-----|-----|-----|-----|-----|
| max. t <sub>fix</sub> for h <sub>ef, red</sub> M8-M20 | 5   | 10  | 15 | 20  | 25  | 30 | 35 | 40 | 45  | 50  | 60         | 70  | 80  | 90          | 100 | 120 | 140 | 160 | 180      | 200 | 250 | 300 | 350 | 400 |

Identification for h<sub>ef, red</sub> is the letter-code between 2 hyphen

fischer Bolt Anchor FBN II, FBN II A4

Product description
Anchor Types

Annex A 2



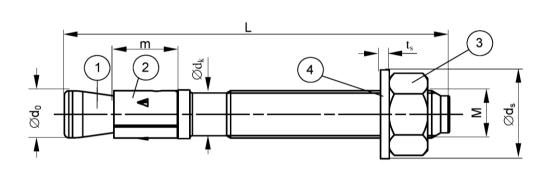



Table A3: Anchor dimensions [mm]

| Part    | Designation      |                            |             |      |      | FBN II, F | BN II A4 |      |      |
|---------|------------------|----------------------------|-------------|------|------|-----------|----------|------|------|
| Part    | Designation      |                            |             | М6   | М8   | M10       | M12      | M16  | M20  |
|         |                  | M                          | =           | M6   | M8   | M10       | M12      | M16  | M20  |
| 1       | Cone bolt        | $\varnothing d_0$          | =           | 5,9  | 7,9  | 9,9       | 11,9     | 15,9 | 19,6 |
|         |                  | $\emptyset$ $d_k$          | =           | 5,2  | 7,1  | 8,9       | 10,8     | 14,5 | 18,2 |
| 2       | Expansion sleeve | m                          | =           | 10   | 11,5 | 13,5      | 16,5     | 21,5 | 33,5 |
| 3       | Hexagon nut      | SW                         | =           | 10   | 13   | 17        | 19       | 24   | 30   |
| 4       | Washer           | t <sub>S</sub>             | ≥           | 1,0  | 1,4  | 1,8       | 2,3      | 2,7  | 2,7  |
| 4       | vvasner          | $\emptyset$ d <sub>s</sub> | <u>&gt;</u> | 11,5 | 15   | 19        | 23       | 29   | 36   |
| Thicks  | ess of fixture   |                            | ≥           | 0    | 0    | 0         | 0        | 0    | 0    |
| THICKII | ess of fixture   | $t_{fix}$                  | <u>≤</u>    | 200  | 200  | 250       | 300      | 400  | 500  |
| Length  | of anchor        | $L_{min}$                  | -           | 45   | 56   | 71        | 86       | 120  | 139  |
| Lengui  |                  | $L_{max}$                  | -           | 245  | 261  | 316       | 396      | 520  | 654  |

| i e e e e e e e e e e e e e e e e e e e |           |
|-----------------------------------------|-----------|
| fischer Bolt Anchor FBN II, FBN II A4   |           |
| Product description Anchor dimensions   | Annex A 3 |



**Table A4:** Materials FBN II (zinc plated ≥ 5µm, DIN EN ISO 4042: 2001-01)

| Part | Designation      | Material                                                                                                                                                                      |
|------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Cone bolt        | Cold form steel or free cutting steel Nominal steel tensile strength $f_{uk} \le 1000 \text{ N/mm}^2$ Nominal yield strength FBN II 8 - 16 $f_{yk} \ge 560 \text{ N/mm}^2$ 1) |
| 2    | Expansion sleeve | Cold strip, EN 10139:2013 <sup>2)</sup>                                                                                                                                       |
| 3    | Hexagon nut      | Steel, property class min. 8, EN ISO 898-2:2012                                                                                                                               |
| 4    | Washer           | Cold strip, EN 10139:2013                                                                                                                                                     |

 $<sup>^{1)}</sup>$  FBN II 6  $f_{yk}\!\geq$  480 N/mm², FBN II 20  $f_{yk}\!\geq$  520 N/mm²  $^{2)}$  Optional stainless steel EN 10088:2014

**Table A5:** Materials FBN II (hot-dip galvanized ≥ 50µm, ISO 10684: 2004 <sup>2)</sup>)

| Part | Designation      | Material                                                                                                                                                                      |
|------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Cone bolt        | Cold form steel or free cutting steel Nominal steel tensile strength $f_{uk} \le 1000 \text{ N/mm}^2$ Nominal yield strength FBN II 8 - 16 $f_{yk} \ge 560 \text{ N/mm}^2$ 1) |
| 2    | Expansion sleeve | Stainless steel EN 10088:2014                                                                                                                                                 |
| 3    | Hexagon nut      | Steel, property class min. 8, EN ISO 898-2:2012                                                                                                                               |
| 4    | Washer           | Cold strip, EN 10139:2013                                                                                                                                                     |

## Table A6: Materials FBN II A4

| Part | Designation      | Material                                                                                                                                                                 |
|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Cone bolt        | Stainless steel EN 10088:2014<br>Nominal steel tensile strength $f_{uk} \le 1000 \text{ N/mm}^2$<br>Nominal yield strength FBN II 8 - 20 $f_{yk} \ge 560 \text{ N/mm}^2$ |
| 2    | Expansion sleeve | Stainless steel EN 10088:2014                                                                                                                                            |
| 3    | Hexagon nut      | Stainless steel EN 10088:2014<br>ISO 3506-2: 2009; property class min. 70                                                                                                |
| 4    | Washer           | Stainless steel EN 10088:2014                                                                                                                                            |

 $<sup>^{1)}\,</sup>FBN~II~6~f_{yk}\!\geq480~N/mm^{2}$ 

fischer Bolt Anchor FBN II, FBN II A4 Annex A 4 **Product description** Materials

 $<sup>^{1)}</sup>$  FBN II 6  $f_{yk}\!\ge$  480 N/mm², FBN II 20  $f_{yk}\!\ge$  520 N/mm²  $^{2)}$  Alternative method sherardized  $\ge$  50  $\mu m,$  EN 13811:2003



## Specifications of intended use

| fisch       | er Bolt Anchor FB  | M6                 | M8 | M10 | M12 | M16 | M20 |  |
|-------------|--------------------|--------------------|----|-----|-----|-----|-----|--|
|             | Steel              | Zinc plated        |    |     | /   |     |     |  |
| <u> ज</u> ़ | Sieei              | Hot-dip galvanized | ı  |     |     | ✓   |     |  |
| Material    | Stainless steel    | A4                 |    |     | /   |     |     |  |
| Stati       | c and quasi-static | loads              |    |     | /   |     |     |  |
| Redu        | uced anchorage d   | -                  |    |     | /   |     |     |  |
| Uncr        | acked concrete     |                    |    | /   |     |     |     |  |

#### Base materials:

- Reinforced and unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

## Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (FBN II (zinc plated / hot-dip galvanized), FBN II A4)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and
  to permanently damp internal condition, if no particular aggressive conditions exist (FBN II A4). Such
  particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash
  zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical
  pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

#### Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored.
   The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- · Anchorages under static or quasi-static actions are to be designed in accordance with:
  - ETAG 001, Annex C, design method A, Edition August 2010 or
  - CEN/TS 1992-4:2009, design method A

### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · Hammer or hollow drilling according to Annex B3
- In case of aborted hole: New hole must be drilled at a minimum distance of twice the depth of the aborted hole or closer, if the hole is filled with a high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load

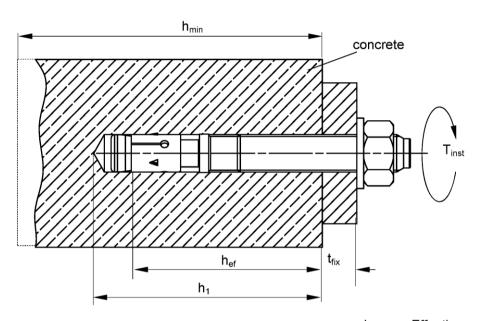

| fischer Bolt Anchor FBN II, FBN II A4 |           |
|---------------------------------------|-----------|
| Intended Use<br>Specifications        | Annex B 1 |





Table B1: Installation parameters

| Type of anchor / size <b>FBN</b>                   | II, FBN             | I II A4 | М6               | М8                        | M10                    | M12                    | M16                     | M20                      |
|----------------------------------------------------|---------------------|---------|------------------|---------------------------|------------------------|------------------------|-------------------------|--------------------------|
| Nominal drill hole diameter                        | $d_0 =$             | [mm]    | 6                | 8                         | 10                     | 12                     | 16                      | 20                       |
| Cutting diameter of drill bit                      | $d_{cut} \le$       | [mm]    | 6,45             | 8,45                      | 10,45                  | 12,5                   | 16,5                    | 20,55                    |
| Effective anchorage depth                          | h <sub>ef</sub> =   | [mm]    | 30 <sup>2)</sup> | 40 (30 <sup>1) 2)</sup> ) | 50 (40 <sup>1)</sup> ) | 65 (50 <sup>1)</sup> ) | 80 (65 <sup>1)</sup> )  | 105 (80 <sup>1)</sup> )  |
| Depth of drill hole in concrete                    | h₁ ≥                | [mm]    | 40               | 56 (46 <sup>1) 2)</sup> ) | 68 (58 <sup>1)</sup> ) | 85 (70 <sup>1)</sup> ) | 104 (89 <sup>1)</sup> ) | 135 (110 <sup>1)</sup> ) |
| Diameter of clearance hole in the fixture          | $d_f \leq$          | [mm]    | 7                | 9                         | 12                     | 14                     | 18                      | 22                       |
| Required torque moment FBN II (zinc plated)        | T <sub>inst</sub> = | [Nm]    | 4                | 15                        | 30                     | 50                     | 100                     | 200                      |
| Required torque moment FBN II (hot-dip galvanized) | T <sub>inst</sub> = | [Nm]    | ı                | 15                        | 30                     | 40                     | 70                      | 200                      |
| Required torque moment FBN II A4                   | T <sub>inst</sub> = | [Nm]    | 4                | 10                        | 20                     | 35                     | 80                      | 150                      |



Effective anchorage depth

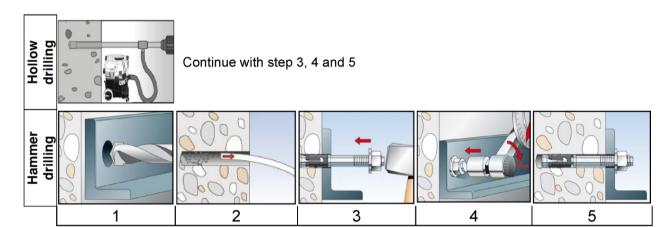
 $t_{fix}$  = Thickness of fixture  $h_1$  = Drill hole depth

 $h_{min}$  = Thickness of concrete member

T<sub>inst</sub> = Required torque moment

| fischer Bolt Anchor FBN II, FBN II A4     |           |
|-------------------------------------------|-----------|
| Intended Use<br>Installation instructions | Annex B 2 |

<sup>&</sup>lt;sup>1)</sup>Values for reduced anchorage depth <sup>2)</sup>Use restricted to anchoring of structural components which are statically indeterminate




**Table B2:** Minimum thickness of concrete members, minimum spacing and minimum edge distance

| Т                              | ype of anchor / size <b>FBN II, FBN</b> | М6                   | M8   | M10              | M12                       | M16                       | M20 |                            |                             |
|--------------------------------|-----------------------------------------|----------------------|------|------------------|---------------------------|---------------------------|-----|----------------------------|-----------------------------|
|                                | Effective anchorage depth               | h <sub>ef, sta</sub> | [mm] | 30 <sup>2)</sup> | 40                        | 50                        | 65  | 80                         | 105                         |
| age<br>h                       | Minimum thickness of member             | h <sub>min</sub>     | [mm] | 100              | 100                       | 100                       | 120 | 160                        | 200                         |
| Standard<br>anchorage<br>depth | Minimum spacing                         | S <sub>min</sub>     | [mm] | 40               | 40                        | 50<br>(70 <sup>1)</sup> ) | 70  | 90<br>(120 <sup>1)</sup> ) | 120                         |
| an Si                          | Minimum edge distance                   | C <sub>min</sub>     | [mm] | 40               | 40<br>(45 <sup>1)</sup> ) | 50<br>(55 <sup>1)</sup> ) | 70  | 90<br>(80 <sup>1)</sup> )  | 120                         |
|                                | Effective anchorage depth               | h <sub>ef, red</sub> | [mm] | -                | 30 <sup>2)</sup>          | 40                        | 50  | 65                         | 80                          |
| ed<br>age                      | Minimum thickness of member             | h <sub>min</sub>     | [mm] | -                | 100                       | 100                       | 100 | 120                        | 160                         |
| Reduced<br>anchorage<br>depth  | Minimum spacing                         | S <sub>min</sub>     | [mm] | 1                | 40<br>(50 <sup>1)</sup> ) | 50                        | 70  | 90                         | 120<br>(140 <sup>1)</sup> ) |
| an<br>an                       | Minimum edge distance                   | C <sub>min</sub>     | [mm] | ı                | 40<br>(45 <sup>1)</sup> ) | 80                        | 100 | 120                        | 120                         |

<sup>1)</sup> Values for FBN II A4

## Installation instructions



| No. | Description                                                         |                                     |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|
| 1   | Create drill hole with hammer drill                                 | Create drill hole with hollow drill |  |  |  |  |  |  |  |
|     |                                                                     | and vacuum cleaner                  |  |  |  |  |  |  |  |
| 2   | Clean bore hole -                                                   |                                     |  |  |  |  |  |  |  |
| 3   | Se                                                                  | et anchor                           |  |  |  |  |  |  |  |
| 4   | Expand anchor with prescribed installation torque T <sub>inst</sub> |                                     |  |  |  |  |  |  |  |
| 5   | Finished installation                                               |                                     |  |  |  |  |  |  |  |

|              | Types of drills |  |
|--------------|-----------------|--|
| Hammer drill | E               |  |
| Hollow drill | Ī               |  |

fischer Bolt Anchor FBN II, FBN II A4

Intended Use
Minimum spacing and edge distance
Installation instructions

Annex B 3

Use restricted to anchoring of structural components which are statically indeterminate



Table C1: Characteristic values of tension resistance for standard and reduced anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

| Type of anchor / size                    | М6                                  | M8       | M10               | M12               | M16    | M20                  |        |     |  |  |
|------------------------------------------|-------------------------------------|----------|-------------------|-------------------|--------|----------------------|--------|-----|--|--|
| Steel failure for standard and           | reduced a                           | nchorag  | e depth           | FBN II            |        |                      |        |     |  |  |
| Characteristic resistance FBN II         | $N_{Rk,s}$                          | [kN]     | 8,3               | 16,5              | 27,2   | 41,6                 | 77,9   | 107 |  |  |
| Partial safety factor                    | γMs                                 | [-]      | 1,5               | 1,4               | 1,4    | 1,4                  | 1,5    | 1,5 |  |  |
| Steel failure for standard and           | reduced a                           | nchorag  | e depth           | FBN II            | A4     |                      |        |     |  |  |
| Characteristic resistance FBN II A4      | N <sub>Rk,s</sub>                   | [kN]     | 10,6              | 16,5              | 27,2   | 41,6                 | 78     | 111 |  |  |
| Partial safety factor                    | γMs                                 | [-]      | 1,5               | 1,4               | 1,4    | 1,4                  | 1,4    | 1,5 |  |  |
| Pullout failure for standard an          | chorage o                           | epth FB  | N II, FB          | N II A4           |        |                      |        |     |  |  |
| Characteristic resistance<br>C20/25      | $N_{Rk,p}$                          | [kN]     | 6 <sup>4)</sup>   |                   |        | - <sup>3)</sup>      |        |     |  |  |
| Pullout failure for reduced and          | horage d                            | epth FBN | III, FBN          | III A4            |        |                      |        |     |  |  |
| Characteristic resistance C20/25         | $N_{Rk,p}$                          | [kN]     | ı                 | 6 <sup>4)</sup>   |        | -                    | 3)     |     |  |  |
|                                          |                                     | C25/30   | 1,10              |                   |        |                      |        |     |  |  |
|                                          | Ψο                                  | C30/37   | 1,22              |                   |        |                      |        |     |  |  |
| Increasing factors for N <sub>Rk,p</sub> |                                     | C35/45   | 1,34              |                   |        |                      |        |     |  |  |
|                                          |                                     | C40/50   | 1,41              |                   |        |                      |        |     |  |  |
|                                          |                                     | C45/55   | 1,48              |                   |        |                      |        |     |  |  |
|                                          |                                     | C50/60   |                   |                   | 1,     | 55                   |        |     |  |  |
| Installation safety factor               | $\gamma_2^{1)} = \gamma_{inst}^{2}$ | [-]      |                   |                   | 1      | ,0                   |        |     |  |  |
| Concrete cone and splitting fa           | ilure for s                         | tandard  | anchor            | age dep           | th FBN | I II, FBN            | III A4 |     |  |  |
| Effective anchorage depth                | h <sub>ef, sta</sub>                | [mm]     | 30 <sup>4)</sup>  | 40                | 50     | 65                   | 80     | 105 |  |  |
| Factor for uncracked concrete            | k <sub>ucr</sub> <sup>2)</sup>      | [-]      |                   |                   |        | ),1                  |        |     |  |  |
| Spacing                                  | S <sub>cr,N</sub>                   | [mm]     |                   |                   | 3 h    | ef, sta              |        |     |  |  |
| Edge distance                            | C <sub>cr,N</sub>                   | [mm]     |                   |                   |        | າ <sub>ef, sta</sub> |        |     |  |  |
| Spacing (splitting failure)              | S <sub>cr,sp</sub>                  | [mm]     | 130 <sup>4)</sup> | 190               | 200    | 290                  | 350    | 370 |  |  |
| Edge distance (splitting failure)        | C <sub>cr,sp</sub>                  | [mm]     | 65 <sup>4)</sup>  | 95                | 100    | 145                  | 175    | 185 |  |  |
| Concrete cone and splitting fa           |                                     |          | nchorag           |                   |        |                      |        |     |  |  |
| Effective anchorage depth                | h <sub>ef, red</sub>                | [mm]     |                   |                   |        |                      | 65     | 80  |  |  |
| Factor for uncracked concrete            | k <sub>ucr</sub> <sup>2)</sup>      | [-]      |                   |                   |        | 0,1                  |        |     |  |  |
| Spacing                                  | S <sub>cr,N</sub>                   | [mm]     |                   |                   | 3 h    | ef, red              |        |     |  |  |
| Edge distance                            | C <sub>cr,N</sub>                   | [mm]     |                   | 1                 |        | ef, red              |        |     |  |  |
| Spacing (splitting failure)              | S <sub>cr,sp</sub>                  | [mm]     | -                 | 190 <sup>4)</sup> | 200    | 290                  | 350    | 370 |  |  |
| Edge distance (splitting failure)        | C <sub>cr,sp</sub>                  | [mm]     | -                 | 95 <sup>4)</sup>  | 100    | 145                  | 175    | 185 |  |  |

<sup>1)</sup> Parameter relevant for design according to ETAG 001, Annex C

fischer Bolt Anchor FBN II, FBN II A4

Performances
Characteristic values of tension resistance for standard and reduced anchorage depth

Annex C 1

<sup>&</sup>lt;sup>2)</sup> Parameter relevant for design according to CEN/TS 1992-4:2009

<sup>3)</sup> Pullout failure not relevant

<sup>4)</sup> Use restricted to anchoring of structural components which are statically indeterminate



Table C2: Characteristic values of shear resistance for standard and reduced anchorage depth under static and quasi-static action (Design method A, according to ETAG 001, Annex C or CEN/TS 1992-4:2009)

|                                                                                | ,                                               |           |                   |                    |            |      |       |     |  |
|--------------------------------------------------------------------------------|-------------------------------------------------|-----------|-------------------|--------------------|------------|------|-------|-----|--|
| Type of anchor / size                                                          |                                                 |           | М6                | M8                 | M10        | M12  | M16   | M20 |  |
| Steel failure without lever arm for s                                          | standard a                                      | nd reduc  | ced anc           | horage             | depth      |      |       |     |  |
| Charact. resistance FBN II                                                     | $V_{Rk,s}$                                      | [kN]      | 6,0               | 13,3               | 21,0       | 31,3 | 55,1  | 67  |  |
| Steel failure without lever arm for s                                          | standard a                                      | nd reduc  | ced anc           | horage             | depth      |      |       |     |  |
| Charact. resistance FBN II A4                                                  | $V_{Rk,s}$                                      | [kN]      | 5,3               | 12,8               | 20,3       | 27,4 | 51    | 86  |  |
| Steel failure with lever arm for stan                                          |                                                 | norage d  | -                 |                    |            |      |       |     |  |
| Charact. bending moment <b>FBN II</b>                                          | $M^0_{Rk,s}$                                    | [Nm]      | 9,4 <sup>3)</sup> | 26,2               | 52,3       | 91,6 | 232,2 | 422 |  |
| Steel failure with lever arm for standard anchorage depth                      |                                                 |           |                   |                    |            |      |       |     |  |
| Charact. bending moment FBN II A4                                              | $M^0_{Rk,s}$                                    | [Nm]      | 8 <sup>3)</sup>   | 26                 | 52         | 85   | 216   | 454 |  |
| Steel failure with lever arm for redu                                          | iced anch                                       | orage de  | pth               |                    |            |      |       |     |  |
| Charact. bending moment <b>FBN II</b>                                          | $M^0_{Rk,s}$                                    | [Nm]      | -                 | 19,9 <sup>3)</sup> | 45,9       | 90,0 | 226,9 | 349 |  |
| Steel failure with lever arm for reduced anchorage depth                       |                                                 |           |                   |                    |            |      |       |     |  |
| Charact. bending moment FBN II A4                                              | M <sup>0</sup> <sub>Rk,s</sub>                  | [Nm]      | -                 | 21 <sup>3)</sup>   | 47         | 85   | 216   | 353 |  |
| Partial safety factor steel failure                                            | γMs                                             | [-]       |                   |                    | 1,         | 25   |       |     |  |
| Factor for ductility                                                           | k <sub>2</sub> <sup>2)</sup>                    | [-]       |                   |                    | 1          | ,0   |       |     |  |
| Concrete pryout failure for standar                                            | d anchora                                       | ge depti  | r FBN II          | , FBN II           | <b>A</b> 4 |      |       |     |  |
| Factor k according to ETAG 001,<br>Annex C or k₃ according to<br>CEN/TS 1992-4 | k <sup>1)</sup> =k <sub>(3)</sub> <sup>2)</sup> | [-]       | 1,4 <sup>3)</sup> | 1,8                | 2,1        | 2,3  | 2,3   | 2,3 |  |
| Installation safety factor                                                     | $\gamma_2$ = $\gamma_{inst}$ 2)                 | [-]       |                   |                    | 1          | ,0   |       |     |  |
| Concrete pryout failure for reduced                                            | anchora                                         | ge depth  | FBN II,           | FBN II             | <b>A</b> 4 |      |       |     |  |
| Factor k according to ETAG 001,<br>Annex C or k₃ according to<br>CEN/TS 1992-4 | k <sup>1)</sup> =k <sub>(3)</sub> <sup>2)</sup> | [-]       | -                 | 1,8 <sup>3)</sup>  | 2,1        | 2,3  | 2,3   | 2,3 |  |
| Installation safety factor                                                     | $\gamma_2$ = $\gamma_{inst}$ 2)                 | [-]       |                   |                    | 1          | ,0   |       |     |  |
| Concrete edge failure for standard                                             | anchorag                                        | e depth   | FBN II, I         | BN II A            | 4          |      |       |     |  |
| Effective length of anchor                                                     | I <sub>f,sta</sub>                              | [mm]      | 30 <sup>3)</sup>  | 40                 | 50         | 65   | 80    | 105 |  |
| Effective diameter of anchor                                                   | d <sub>nom</sub>                                | [mm]      | 6                 | 8                  | 10         | 12   | 16    | 20  |  |
| Installation safety factor                                                     |                                                 |           |                   |                    |            |      |       |     |  |
| Concrete edge failure for reduced a                                            | anchorage                                       | e depth F | BN II, F          | BN II A            | 4          |      |       |     |  |
| Effective length of anchor                                                     | I <sub>f,red</sub>                              | [mm]      | -                 | 30 <sup>3)</sup>   | 40         | 50   | 65    | 80  |  |
| Effective diameter of anchor                                                   | d <sub>nom</sub>                                | [mm]      | -                 | 8                  | 10         | 12   | 16    | 20  |  |
| Installation safety factor                                                     | $\gamma_2$ = $\gamma_{inst}$ 2)                 | [-]       |                   |                    | 1          | ,0   |       |     |  |
|                                                                                |                                                 | _         |                   |                    |            |      |       |     |  |

fischer Bolt Anchor FBN II, FBN II A4 Annex C 2 **Performances** Characteristic values of shear resistance for standard and reduced anchorage depth

<sup>1)</sup> Parameter relevant for design according to ETAG 001, Annex C
2) Parameter relevant for design according to CEN/TS 1992-4:2009
3) Use restricted to anchoring of structural components which are statically indeterminate



Table C3: Displacements due to tension loads

| Type of anchor / size FBN II, | ۹4                   | М6   | M8                       | M10                      | M12 | M16                      | M20  |                          |  |  |  |
|-------------------------------|----------------------|------|--------------------------|--------------------------|-----|--------------------------|------|--------------------------|--|--|--|
| Standard anchorage depth      | h <sub>ef, sta</sub> | [mm] | 30                       | 40                       | 50  | 65                       | 80   | 105                      |  |  |  |
| Tension load C20/25           | N                    | [kN] | 2,8                      | 6,1                      | 8,5 | 12,6                     | 17,2 | 25,8                     |  |  |  |
| Diantagamenta                 | $\delta_{N0}$        | [mm] | 1,9                      | 0,6                      | 0,9 | 1,5 (1,9 <sup>1)</sup> ) | 1,8  | 1,8 (2,0 <sup>1)</sup> ) |  |  |  |
| Displacements                 | $\delta_{N\infty}$   | [mm] |                          | 3,1 (2,7 <sup>1)</sup> ) |     |                          |      |                          |  |  |  |
| Reduced anchorage depth       | h <sub>ef, red</sub> | [mm] |                          | 30                       | 40  | 50                       | 65   | 80                       |  |  |  |
| Tension load C20/25           | N                    | [kN] | _                        | 2,8                      | 6,1 | 8,5                      | 12,6 | 17,2                     |  |  |  |
| Dianlacements                 | $\delta_{N0}$        | [mm] |                          | 0,4                      | 0,7 | 0,7                      | 0,9  | 1,0                      |  |  |  |
| Displacements                 | $\delta_{N\infty}$   | [mm] | 1,6 (1,7 <sup>1)</sup> ) |                          |     |                          |      |                          |  |  |  |

<sup>1)</sup> Values for FBN II A4

Table C4: Displacements due to shear loads

| Type of anchor / size FBN II, FBN II A4 |                    |      | М6  | M8  | M10  | M12  | M16  | M20  |
|-----------------------------------------|--------------------|------|-----|-----|------|------|------|------|
| Shear load FBN II                       | V                  | [kN] | 3,4 | 7,6 | 12,0 | 17,9 | 31,5 | 38,2 |
| Displacements FBN II                    | $\delta_{V0}$      | [mm] | 0,7 | 1,5 | 1,6  | 2,0  | 3,0  | 2,6  |
|                                         | $\delta_{V\infty}$ | [mm] | 1,1 | 2,3 | 2,4  | 3,0  | 4,5  | 3,9  |
| Shear load FBN II A4                    | V                  | [kN] | 3,0 | 7,3 | 11,6 | 15,7 | 29,1 | 49,0 |
| Displacements FBN II A4                 | $\delta_{V0}$      | [mm] | 1,5 | 1,4 | 2,1  | 2,6  | 2,7  | 4,6  |
|                                         | $\delta_{V\infty}$ | [mm] | 2,3 | 2,2 | 3,2  | 3,9  | 4,1  | 7,0  |

fischer Bolt Anchor FBN II, FBN II A4

Performances
Displacement under tension and shear loads

Annex C 3