

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

PE100-RC Parts and Fittings GPA NO

The Norwegian EPD Foundation

Owner of the declaration:

GPA Flowsystem AS

Product

PE100-RC Parts and Fittings GPA NO

Declared unit:

1 kg

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 019:2022 Part B for Piping systems use in sewage and storm water systems (under gravity)

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-6886-6278-EN

Registration number:

NEPD-6886-6278-EN

Issue date: 17.06.2024

Valid to: 17.06.2029

ver-111224

EPD software:

LCAno EPD generator ID: 415416

General information

Product

PE100-RC Parts and Fittings GPA NO

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NFPD-6886-6278-FN

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 019:2022 Part B for Piping systems use in sewage and storm water systems (under gravity)

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 kg PE100-RC Parts and Fittings GPA NO

Declared unit (cradle to gate) with option:

A1-A3,A4,A5,D

Functional unit:

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

GPA Flowsystem AS Contact person: Aleksander Haugen Knutsen Phone: +47 48133609 e-mail: info@gpa.no

Manufacturer:

AGRU Kunststofftechnik GmbH

Place of production:

AGRU Kunststofftechnik GmbH Ing.-Pesendorfer-Straße 31 4540 Bad Hall, Austria

Management system:

ISO 9001 and ISO 14001

Organisation no:

936 875 025

Issue date:

17.06.2024

Valid to:

17.06.2029

Year of study:

2022

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Stian Blænes

Reviewer of company-specific input data and EPD: Aleksander Knutsen

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

This EPD covers polyethylene (PE) parts and fittings from 16mm to 1400mm for use in a wide range of applications including, water supply, once-through water systems, irrigation, sewerage, mining, slurry transport, process industry - CPI, ventilation, fuel, compressed air and gas.

Product specification

EPD covers the products displayed on https://www.gpa.no/Produkter/PE/Rordeler

Materials	kg	%
Plastic - Polyethylene (HDPE)	1,00	100,00
Total	1,00	100,00

Technical data:

EPD covers polyethylene (PE) parts and fittings from D16mm to 1400mm and SDR-class 7,4 - 41. PE material with density 960kg/m3

Market:

Norway

Reference service life, product

100

Reference service life, building

100

LCA: Calculation rules

Declared unit:

1 kg PE100-RC Parts and Fittings GPA NO

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. They represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on registered EPDs according to EN 15804, Ostfold Research databases, ecoinvent and other LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Plastic - Polyethylene (HDPE)	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

Р	roduct stag	ge		uction on stage	Use stage			End of life stage			Beyond the system boundaries					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Χ	Χ	Χ	Χ	Χ	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	X

System boundary:

Additional technical information:

Packaging material is not included in this EPD, but can be provided for project specific EPD on request.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

A4: The pipes are transported 1700km from Bad Hall, Austria to Langhus, Norway before delivery to customer which is set to 300km. The distance of 300km is given in newer PCRs as a default value for Norwegian domestic transport.

A5: Has not been included due to there being several ways of installation. Project specific EPDs available on request.

C1-C4: Has not been included as it is assumed that the pressure pipes are left as is after end of life.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km) - Europe	53,3 %	1700	0,023	l/tkm	39,10
Truck, over 32 tonnes, EURO 6 (km) - Europe	53,3 %	300	0,023	l/tkm	6,90

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environmen	Environmental impact									
	Indicator	Unit	A1-A3	A4	A5	D				
	GWP-total	kg CO ₂ -eq	2,90E+00	1,74E-01	0	0				
	GWP-fossil	kg CO ₂ -eq	2,89E+00	1,74E-01	0	0				
	GWP-biogenic	kg CO ₂ -eq	1,15E-02	7,46E-05	0	0				
	GWP-luluc	kg CO ₂ -eq	7,25E-04	5,31E-05	0	0				
Ò	ODP	kg CFC11 -eq	2,46E-07	4,20E-08	0	0				
E	АР	mol H+ -eq	9,13E-03	5,61E-04	0	0				
	EP-FreshWater	kg P -eq	4,49E-05	1,39E-06	0	0				
	EP-Marine	kg N -eq	1,63E-03	1,23E-04	0	0				
*	EP-Terrestial	mol N -eq	1,82E-02	1,37E-03	0	0				
	POCP	kg NMVOC -eq	8,23E-03	5,38E-04	0	0				
	ADP-minerals&metals ¹	kg Sb-eq	2,36E-05	3,10E-06	0	0				
	ADP-fossil ¹	MJ	8,41E+01	2,83E+00	0	0				
<u>^</u>	WDP ¹	m ³	2,14E+03	2,17E+00	0	0				

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additional envir	onmental impact indicato	ors				
	Indicator	Unit	A1-A3	A4	A5	D
	PM	Disease incidence 6		1,60E-08	0	0
	IRP ²	kgBq U235 -eq	5,59E-02	1,24E-02	0	0
	ETP-fw ¹	CTUe		2,07E+00	0	0
	HTP-c ¹	CTUh	7,94E-10	0,00E+00	0	0
42 <u>B</u>	HTP-nc ¹	CTUh	1,86E-08	2,00E-09	0	0
	SQP ¹	dimensionless	3,15E+00	3,24E+00	0	0

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Soil Quality (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use	esource use							
	Indicator	Unit	A1-A3	A4	A5	D		
T. C.	PERE	МЈ	7,31E+00	3,56E-02	0	0		
	PERM	MJ	0,00E+00	0,00E+00	0	0		
્રાં ક	PERT	MJ	7,31E+00	3,56E-02	0	0		
	PENRE	MJ	4,47E+01	2,83E+00	0	0		
	PENRM	MJ	4,25E+01	0,00E+00	0	0		
IA	PENRT	MJ	8,72E+01	2,83E+00	0	0		
1	SM	kg	0,00E+00	0,00E+00	0	0		
	RSF	МЈ	9,78E-02	1,25E-03	0	0		
	NRSF	MJ	1,25E-02	4,17E-03	0	0		
®	FW	m^3	3,86E-02	3,22E-04	0	0		

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste							
	Unit	A1-A3	A4	A5	D		
	HWD	kg	7,68E-03	1,55E-04	0	0	
Ū	NHWD	kg	1,26E-01	2,46E-01	0	0	
	RWD	kg	5,38E-05	1,93E-05	0	0	

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow								
Indicator	Unit	A1-A3	A4	A5	D			
∅>	CRU	kg	0,00E+00	0,00E+00	0	0		
\$\	MFR	kg	2,05E-03	0,00E+00	0	0		
DF	MER	kg	2,37E-03	0,00E+00	0	0		
₽D	EEE	MJ	2,90E-06	0,00E+00	0	0		
	EET	MJ	4,39E-05	0,00E+00	0	0		

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content							
Unit	At the factory gate						
kg C	0,00E+00						
kg C	0,00E+00						
	kg C						

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, guarantee of origin, low voltage, for AGRU factory In Austria (kWh)	Modified ecoinvent 3.6	301,58	g CO2-eq/kWh

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products							
Indicator Unit A1-A3 A4 A5 D							
GWPIOBC	kg CO ₂ -eq	2,78E+00	1,74E-01	0	0		

GWP-IOBC = Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012 + A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no report number: 07.21.

Ruttenborg et al., (2023) EPD generator for NPCR019:2022 - Background information for EPD generator application and LCA data, LCA.no report number: 04.23.

NPCR Part A: Construction products and services. Ver. 2.0. March 2021, EPD-Norge.

NPCR 019:2022 Part B for Piping systems use in sewage and storm water systems (under gravity). Ver. 2.0 May 2022, EPD-Norge.

EN 12201 - Plastics piping systems for water supply, and for drains and sewers under pressure — Polyethylene (PE)

EN 1555 - Plastics piping systems for the supply of gaseous fuels - Polyethylene (PE)

EN ISO 15494 - Plastics piping systems for industrial applications - Polybutene (PB), polyethylene (PE), polyethylene of raised temperature resistance (PE-RT), crosslinked polyethylene (PE-X), polypropylene (PP) - Metric series for specifications for components and the system

© epd-norge	Program operator and publisher	Phone: +47 977 22 020
	The Norwegian EPD Foundation	e-mail: post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web: www.epd-norge.no
CDA	Owner of the declaration:	Phone: +47 48133609
GPA	GPA Flowsystem AS	e-mail: info@gpa.no
OPTIMIZENS VOLUR FLOW	Regnbueveien 9, 1405 Langhus, Norway	web:
(LCA)	Author of the Life Cycle Assessment	Phone: +47 916 50 916
	LCA.no AS	e-mail: post@lca.no
	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
	Developer of EPD generator	Phone: +47 916 50 916
(LCA\	LCA.no AS	e-mail: post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web: www.lca.no
ECO PLATFORM	ECO Platform	web: www.eco-platform.org
VERIFIED	ECO Portal	web: ECO Portal